Not so hard

Calculus Level 3

We want to make a metallic cylindrical box with lid having a given volume V V .

Find the relation between its height h h and the radius r r of the base that minimize the amount of sheet metal used.

h = 2 r h=2r h = 3 r h=3r h = 4 r h=4r h = r h=r

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohammad Hamdar
Jan 4, 2016

V = π r 2 h h = V π r 2 A r e a ( A ) = 2 π r 2 + 2 π r h = 2 π r 2 + 2 π r V π r 2 = 2 ( π r 2 + V r ) d e r i v i n g A w i t h r e s p e c t t o r A = 2 ( 2 π r V r 2 ) = 2 ( 2 π r 3 V r 2 ) A = 0 , V = 2 π r 3 a n d V = π r 2 h s o , h = 2 r ( s k e t c h i n g a t a b l e o f v a r i a t i o n o f A w e f i n d t h a t A c h a n g e s s i g n f r o m v e t o + v e a t t h e p o i n t w h e r e i t i s n u l l ) V=\pi { r }^{ 2 }h\quad \longrightarrow h=\frac { V }{ \pi { r }^{ 2 } } \\ Area(A)=2\pi { r }^{ 2 }+2\pi rh=2\pi { r }^{ 2 }+2\pi r\frac { V }{ \pi { r }^{ 2 } } =2(\pi { r }^{ 2 }+\frac { V }{ r } )\\ deriving\quad A\quad with\quad respect\quad to\quad r\\ A'=2(2\pi r-\frac { V }{ { r }^{ 2 } } )=2(\frac { 2\pi { r }^{ 3 }-V }{ { r }^{ 2 } } )\\ A'=0,\quad V=2\pi { r }^{ 3 }\quad and\quad V=\pi { r }^{ 2 }h\\ so,\quad h=2r\quad (sketching\quad a\quad table\quad of\quad variation\quad of\quad A\quad we\quad find\quad that\quad A'\quad changes\quad sign\quad from\quad -ve\quad to\quad +ve\quad at\quad the\quad point\quad where\quad it\quad is\quad null)

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...