A Geometry Problem by Mohd.Hamza I I II

Geometry Level pending

Suppose that A , B , C , D , E A,B,C,D,E are distinct points, no three of which lie on a line, in the Euclidean plane. The squares of the length of the line segment joining any 2 points is a rational number. And B D > A D > C D > E D BD>AD>CD>ED and a r e a ( A B C ) \mathrm{area}(\triangle ABC) is a natural number.

Then the value of a r e a ( A B C D ) a r e a ( A B C E ) \frac{\mathrm{area}(ABCD)}{\mathrm{area}(ABCE)} can be:

S t a t e m e n t 1 \mathrm{Statement} 1 : Irrational

S t a t e m e n t 2 \mathrm{Statement} 2 : Rational

S t a t e m e n t 3 \mathrm{Statement} 3 : Integer

Which of the above statement(s) are true ?

1 , 2 , 3 1, 2, 3 3 3 only 1 1 only 2 2 only 1 , 2 1, 2 2 , 3 2, 3

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohd. Hamza
Mar 27, 2019

Since B D > A D > C D > E D BD>AD>CD>ED . Therefore, a r e a ( A B C D ) a r e a ( A B C E ) = a r e a ( A B C ) + a r e a ( A C D ) a r e a ( A B C ) + a r e a ( A C E ) \frac{\mathrm{area}(ABCD)}{\mathrm{area}(ABCE)} = \frac{\mathrm{area}(\triangle ABC)+\mathrm{area}(\triangle ACD)}{\mathrm{area}(\triangle ABC)+\mathrm{area}(\triangle ACE)}

Let A ( 1 , 0 ) ; B ( 1 , 0 ) ; C ( x c , y c ) ; D ( x d , y d ) A (-1,0); B(1,0); C(x_c,y_c); D(x_d,y_d) A C 2 B C 2 = ( x c + 1 ) 2 + y c 2 ( x c 1 ) 2 + y c 2 = 4 x c Q AC^2 - BC^2 = (x_c+1)^2 + y_c^2 - (x_c-1)^2 + y_c^2 = 4x_c \in \mathbb{Q} x c , x d Q \Rightarrow x_c,x_d \in \mathbb{Q} A C 2 + B C 2 = ( x c + 1 ) 2 + y c 2 + ( x c 1 ) 2 + y c 2 = 2 y c 2 Q AC^2+BC^2 = (x_c+1)^2 + y_c^2 +(x_c-1)^2 + y_c^2 = 2y_c^2 \in \mathbb{Q} y c 2 , y d 2 Q \Rightarrow y_c^2 , y_d^2 \in \mathbb{Q} C D 2 = ( x c x d ) 2 + ( y c y d ) 2 Q CD^2 = (x_c-x_d)^2 + (y_c-y_d)^2 \in \mathbb{Q} x c 2 + x d 2 2 x c x d + y c 2 + y d 2 2 y c y d Q \Rightarrow x_c^2+x_d^2-2x_cx_d + y_c^2+y_d^2-2y_cy_d \in \mathbb{Q} y c y d Q \Rightarrow y_cy_d \in \mathbb{Q}

a r e a ( A C D ) a r e a ( A C E ) = y c y d = y c y d y d 2 Q \frac{\mathrm{area}(\triangle ACD)}{\mathrm{area}(\triangle ACE)} = |\frac{y_c}{y_d}| = |\frac{y_cy_d}{y_d^2}| \in \mathbb{Q} Now, a r e a ( A B C ) + a r e a ( A C D ) a r e a ( A B C ) + a r e a ( A C E ) Q \frac{\mathrm{area}(\triangle ABC)+\mathrm{area}(\triangle ACD)}{\mathrm{area}(\triangle ABC)+\mathrm{area}(\triangle ACE)} \in \mathbb{Q} Since Z Q \mathbb{Z} \subset \mathbb{Q} .

Now, lets consider an example:

Let

a r e a ( A B C ) \mathrm{area}(\triangle ABC) be 1 1

a r e a ( A C D ) \mathrm{area}(\triangle ACD) be 2 √2

a r e a ( A C E ) \mathrm{area}(\triangle ACE) be 2 2

Then, a r e a ( A B C D ) a r e a ( A B C E ) = a r e a ( A B C ) + a r e a ( A C D ) a r e a ( A B C ) + a r e a ( A C E ) = 2 + 1 2 + 1 = 2 + 1 3 \frac{\mathrm{area}(ABCD)}{\mathrm{area}(ABCE)} = \frac{\mathrm{area}(\triangle ABC)+\mathrm{area}(\triangle ACD)}{\mathrm{area}(\triangle ABC)+\mathrm{area}(\triangle ACE)} = \frac{√2 + 1}{2+1}=\frac{√2 + 1}{3} which is irrational .

Therefore Statement 1, 2, 3 all are correct.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...