Suppose that are distinct points, no three of which lie on a line, in the Euclidean plane. The squares of the length of the line segment joining any 2 points is a rational number. And and is a natural number.
Then the value of can be:
: Irrational
: Rational
: Integer
Which of the above statement(s) are true ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Since B D > A D > C D > E D . Therefore, a r e a ( A B C E ) a r e a ( A B C D ) = a r e a ( △ A B C ) + a r e a ( △ A C E ) a r e a ( △ A B C ) + a r e a ( △ A C D )
Let A ( − 1 , 0 ) ; B ( 1 , 0 ) ; C ( x c , y c ) ; D ( x d , y d ) A C 2 − B C 2 = ( x c + 1 ) 2 + y c 2 − ( x c − 1 ) 2 + y c 2 = 4 x c ∈ Q ⇒ x c , x d ∈ Q A C 2 + B C 2 = ( x c + 1 ) 2 + y c 2 + ( x c − 1 ) 2 + y c 2 = 2 y c 2 ∈ Q ⇒ y c 2 , y d 2 ∈ Q C D 2 = ( x c − x d ) 2 + ( y c − y d ) 2 ∈ Q ⇒ x c 2 + x d 2 − 2 x c x d + y c 2 + y d 2 − 2 y c y d ∈ Q ⇒ y c y d ∈ Q
a r e a ( △ A C E ) a r e a ( △ A C D ) = ∣ y d y c ∣ = ∣ y d 2 y c y d ∣ ∈ Q Now, a r e a ( △ A B C ) + a r e a ( △ A C E ) a r e a ( △ A B C ) + a r e a ( △ A C D ) ∈ Q Since Z ⊂ Q .
Now, lets consider an example:
Let
a r e a ( △ A B C ) be 1
a r e a ( △ A C D ) be √ 2
a r e a ( △ A C E ) be 2
Then, a r e a ( A B C E ) a r e a ( A B C D ) = a r e a ( △ A B C ) + a r e a ( △ A C E ) a r e a ( △ A B C ) + a r e a ( △ A C D ) = 2 + 1 √ 2 + 1 = 3 √ 2 + 1 which is irrational .
Therefore Statement 1, 2, 3 all are correct.