A geometry problem by Paola Ramírez

Geometry Level 3

A figure is built by isosceles triangles as the image shows. A B = B C AB=BC , then B C = C D BC=CD and so on. If B A C = 1 7 \angle BAC=17^\circ , how many isosceles triangles can you draw?


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Jason Chrysoprase
May 11, 2016

C A B = 1 7 (Triangle 1 ) \large \angle{CAB} = 17^\circ \text{(Triangle 1 )}

Now let’s find C B D (Triangle 2) \large \text{Now let's find }\angle{CBD} \text{(Triangle 2)}

C B D = 2 C A B C B D = 2 ( 1 7 ) C B D = 3 4 \large \space \space \space \angle{CBD} = 2\angle{CAB} \\ \large \space \space \space \angle{CBD} = 2( 17^\circ) \\ \large \space \space \space \angle{CBD} = 34^\circ

Now find E D F (Triangle 3) \large \text{Now find} \space \angle{EDF} \text{(Triangle 3)}

E D F = 2 C B D E D F = 2 ( 3 4 ) E D F = 6 8 \large \space \space \space \angle{EDF} = 2\angle { CBD} \\ \large \space \space \space \angle { EDF} = 2(34^\circ) \\ \large \space \space \space \angle{EDF} = 68^\circ

Between B C D and E D F , there must be another triangle ( C D E (Triangle 4)) \large \text{Between} \space \triangle{BCD} \space \text{and} \space \triangle {EDF} \text{, there must be another triangle ( } \triangle {CDE} \text{ (Triangle 4))}

There is no way Triangle 6 existed because one of the base angle of the triangle = 6 8 × 2 = 13 6 \large \text{There is no way Triangle 6 existed because one of the base angle of the triangle} = 68^\circ \times 2 = 136^\circ

We cant draw such a triangle because then the third vertex would not be formed because the equal sides would never intersect as they move apart \large\text{We cant draw such a triangle because then the third vertex would not be formed because the equal sides would never intersect as they move apart}

Since Triangle 6, 7, 8, 9, ... is no longer existed, let’s find out about Triangle 5 \large \text{Since Triangle 6, 7, 8, 9, ... is no longer existed, let's find out about Triangle 5 }

D E C = 18 0 ( 18 0 6 8 3 4 ) 2 = 5 1 D E F = 18 0 2 ( 6 8 ) = 4 4 F E G = 18 0 5 1 4 4 = 8 5 F G E = 8 5 E F G = 18 0 2 ( 8 5 ) = 1 0 ( E F G (Triangle 5)) \large \space \space \space \angle {DEC} = \frac{180^\circ-(180^\circ - 68^\circ - 34^\circ)}{2} = 51^\circ \\ \large\space \space \space \angle{DEF} = 180^\circ - 2(68^\circ) = 44^\circ \\ \large \space \space \space \angle {FEG} = 180^\circ - 51^\circ - 44^\circ = 85^\circ \\ \large \space \space \space \angle{FGE} = 85^\circ \\ \large \space \space \space \angle{EFG} = 180^\circ - 2(85^\circ) = 10^\circ \text{( } \triangle{EFG} \text{(Triangle 5))}

So there is 5 isosceles triangle that can fit in \large \text{ So there is}\space \color{#D61F06}{\boxed{5}}\space \text {isosceles triangle that can fit in}

It’s the only solution i can think of :) \large \text{ It's the only solution i can think of :)}

Exactly, that is the only solution i too can think of, great solved it the same way :)

Ashish Menon - 5 years, 1 month ago

Can you plz add one statement in your solution, the next isosceles triangle should have their equal angles 180 ( 2 + 68 ) ) = 110 180 - (2 + 68)) = 110 . And we cant draw such a triangle because then the third vertex would not be formed because the equal sides would never intersect as they move apart.

Ashish Menon - 5 years, 1 month ago

Log in to reply

Okay :) , thx for the improvement

Jason Chrysoprase - 5 years, 1 month ago
Boon Yang
May 15, 2016

We let T(n) = 2T (n-1) - T (n-2) with T (1)=17 and T (0)=0. n=2, T (2)=34,...,n=5, T (5)=85. n=6 and T (6)=102 is impossible as 2T (6)>180. Hence, n=5.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...