A strange quadrilateral

Geometry Level 3

Consider a rectangle which has a diagonal of length 6. If P P is a point on side A B AB such that A P = A D , \lvert\overline{AP}\rvert=\lvert\overline{AD}\rvert, and Q Q is a point on the extension of side A D AD such that A Q = A B , \lvert\overline{AQ}\rvert=\lvert\overline{AB}\rvert, what is the area of the quadrilateral A P C Q ? APCQ?


The answer is 18.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Discussions for this problem are now closed

Ilya Andreev
Jan 12, 2015

Let's do some name calling: A P = x , P B = y AP=x, PB=y . Using the information given to us, we can also write A D = x ; A B = x + y ; D Q = A Q A D = ( x + y ) x = y AD = x; AB=x+y; DQ=AQ-AD=(x+y)-x=y .

Now let's write the expression for the diagonal BD, applying the Pythagorean theorem to, say, Δ A D B \Delta ADB : B D 2 = A B 2 + A D 2 BD^2=AB^2+AD^2 B D 2 = ( x + y ) 2 + x 2 = 2 x 2 + 2 x y + y 2 = 36 BD^2=(x+y)^2+x^2=2x^2+2xy+y^2=36

We might need it somewhere, who knows? Anyway, thinking about the area of the polygon we want to find, the first urge is to break it into two parts: trapezoid A P C D APCD and right triangle D Q C DQC . Their corresponding areas are A A P C D = x + ( x + y ) 2 x = ( x + y 2 ) x = x 2 + x y 2 A_{APCD}=\frac{x+(x+y)}{2}x=(x+\frac{y}{2})x=x^2+\frac{xy}{2} and A Δ D Q C = 1 2 y ( x + y ) = 1 2 y 2 + x y 2 A_{\Delta DQC}=\frac{1}{2}y(x+y)=\frac{1}{2}y^2+\frac{xy}{2}

Let's sum them up: A A P C Q = x 2 + x y 2 + x y 2 + y 2 2 = 1 2 ( 2 x 2 + 2 x y + y 2 ) A_{APCQ}=x^2+\frac{xy}{2}+\frac{xy}{2}+\frac{y^2}{2}=\frac{1}{2}(2x^2+2xy+y^2)

Look at you! You're just half of B D 2 BD^2 , or simply 36 2 = 18 \frac{36}{2}=\boxed{18}

Mehul Chaturvedi
Jan 12, 2015

Please upvote It if you like it


First of all seeing the conditions in the questions I assumed that A B C D ABCD is a square and Q Q coincides D D and P P coincides B B

Now as B P BP is a diagonal B P = 2 A B \therefore BP=\sqrt{2}\cdot AB

i.e 6 = 2 A B A B = 3 2 6=\sqrt{2}\cdot AB \Rightarrow AB=3\sqrt 2

As area of square is A B 2 AB^2 where A B AB is side of a square

\Rightarrow \therefore Area= ( 2 3 ) 2 18 c m 2 (2\sqrt 3)^2 \Rightarrow 18cm^2

Hence the answer is 18 \Huge\Rightarrow\color{royalblue}{\boxed{18}}

Having found the answer under such a specific assumption, you should then proceed to try and solve the general case.

Calvin Lin Staff - 6 years, 5 months ago

See my response above.

Roman Frago - 6 years, 4 months ago

Very imaginative. The solution is not a trial and error approach. As P and the rectangle are arbitrary, they can be moved provided the conditions are not changed.

The only problem is the use of the word assume. Yes, a square is rectangle but a rectangle as we know is not necessarily a square.

But I understand why and how he came up with the assumption, the solution is very creative nonetheless. I guess it would be easier to understand to see what happens if point D is moved closer to Q. To be consistent with the conditions, P must move closer to B.

Roman Frago - 6 years, 4 months ago
Ratnadip Kuri
Jan 12, 2015

Because BD=6 Then, A D 2 AD^2 + A B 2 AB^2 = 6 2 6^2 = 36

From above figure total area is= A D 2 AD^2 + 1 2 \frac{1}{2} PX CX + 1 2 \frac{1}{2} DQ CD

\rightarrow A D 2 AD^2 + 1 2 \frac{1}{2} AD (AB-AD) + 1 2 \frac{1}{2} (AB-AD) AB

\rightarrow A D 2 AD^2 + 1 2 \frac{1}{2} (AB AD - A D 2 AD^2 + A B 2 AB^2 - AB AD)

\rightarrow A D 2 AD^2 + 1 2 \frac{1}{2} ( A B 2 AB^2 - A D 2 AD^2 )

\rightarrow 1 2 \frac{1}{2} (2 A D 2 AD^2 + A B 2 AB^2 - A D 2 AD^2 )

\rightarrow 1 2 \frac{1}{2} A D 2 AD^2 + A B 2 AB^2

\rightarrow 36 2 \frac{36}{2}

\rightarrow 18

So, Total area is 18.

Bk Lim
Mar 2, 2015

Lets create straight line AC and straight line PQ.

AC is perpendicular to PQ. A r e a A P C Q = A C × P Q 2 = 6 × 6 2 = 18 u n i t 2 Area_{APCQ}=\frac{AC\times PQ}{2}=\frac{6\times6}{2}=18unit^{2}

Paola Ramírez
Jan 12, 2015

Area of A P Q C = A C Q + A P C APQC=\triangle ACQ+\triangle APC .

As A P = A D = B C A P C AP=AD=BC \triangle APC area is 1 2 ( A D ) ( A D ) = 1 2 A D 2 \frac{1}{2}(AD)(AD)=\frac{1}{2}AD^{2} .

As A B = D C = A Q A Q C AB=DC=AQ \triangle AQC area is 1 2 ( A B ) ( A B ) = 1 2 A B 2 \frac{1}{2}(AB)(AB)=\frac{1}{2}AB^{2} .

Thus A P Q C APQC area is ( 1 2 ) ( A B 2 + A D 2 ) (\frac{1}{2})(AB^{2}+AD^{2})

We know that A B 2 + A D 2 = 6 2 = 36 AB^{2}+AD^2=6^2=36

So area A P Q C = ( 1 2 ) ( A B 2 + A D 2 ) = ( 1 2 ) ( 36 ) = 18 APQC=(\frac{1}{2})(AB^{2}+AD^{2})=(\frac{1}{2})(36)=\boxed{18}

i did it the same way as you did

Karel Bachri - 6 years, 4 months ago
Joven Victor Logo
Jan 14, 2015

According to I l y a A n d r e e v , 2 x 2 + 2 x y + y 2 = 36. \text{According to }\color{#0000ff}{Ilya}\text{ }\color{#0000ff}{Andreev}\text{, }2x^2+2xy+y^2=36.

The assumption of one M e h u l C h a t u r v e d i can be explained by similarity. \text{The assumption of one }\color{#0000ff}{Mehul}\text{ }\color{#0000ff}{Chaturvedi}\text{ can be explained by similarity. }

A P = A D and A B = A Q . All are sides of two squares. All squares are similar. AP=AD\text{ and }AB=AQ.\text{ All are sides of two squares. All squares are similar.}

Refer to the figure above. A B R Q is a square. Its area is A A B R Q = ( x + y ) 2 \text{Refer to the figure above. }ABRQ\text{ is a square. Its area is }A_{ABRQ}=(x+y)^2

LaTeX \color{#ffffff}{\LaTeX}

The area of A P C Q can be solve by subtracting the areas of Δ P B C and Δ C R Q . \text{The area of }APCQ\text{ can be solve by subtracting the areas of }\Delta{PBC}\text{ and }\Delta{CRQ}.

A Δ P B C = 1 2 x y A_{\Delta{PBC}}=\frac{1}{2}xy

A Δ C R Q = 1 2 y ( x + y ) A_{\Delta{CRQ}}=\frac{1}{2}y(x+y)

LaTeX \color{#ffffff}{\LaTeX}

A A P C Q = A A B R Q A P B C A C R Q A_{APCQ}=A_{ABRQ}-A_{PBC}-A_{CRQ}

A A P C Q = ( x + y ) 2 1 2 x y 1 2 y ( x + y ) A_{APCQ}=(x+y)^2-\frac{1}{2}xy-\frac{1}{2}y(x+y)

A A P C Q = x 2 + 2 x y + y 2 1 2 x y 1 2 x y 1 2 y 2 A_{APCQ}=x^2+2xy+y^2-\frac{1}{2}xy-\frac{1}{2}xy-\frac{1}{2}y^2

A A P C Q = x 2 + x y + 1 2 y 2 \boxed{A_{APCQ}=x^2+xy+\frac{1}{2}y^2}

LaTeX \color{#ffffff}{\LaTeX}

Solve for y 2 in 2 x 2 + 2 x y + y 2 = 36 \text{Solve for }y^2\text{ in }2x^2+2xy+y^2=36

y 2 = 36 2 x 2 2 x y Plug this to the other equation. y^2=36-2x^2-2xy\leftarrow\text{ Plug this to the other equation.}

A A P C Q = x 2 + x y + 1 2 ( 36 2 x 2 2 x y ) A_{APCQ}=x^2+xy+\frac{1}{2}(36-2x^2-2xy)

A A P C Q = x 2 + x y + 18 x 2 x y A_{APCQ}=x^2+xy+18-x^2-xy

A A P C Q = 18 \color{#20A900}{\boxed{\huge{A_{APCQ}=18}}}

LaTeX \color{#FFFFFF}{\LaTeX}

LaTeX \color{#EC7300}{\LaTeX}

PS. Help me know how to tag! lol Please upvote. :) \text{PS. Help me know how to tag! lol Please upvote. :)}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...