A geometry problem by Prince Raj

Geometry Level 2

Which of the options is equal to sin 3 x cos 3 x \sin^3 x - \cos^3 x ?

( sin x + cos x ) ( 1 sin x cos x ) (\sin x + \cos x ) ( 1 - \sin x \cos x ) cos 2 x \cos^2 x ( sin x cos x ) ( 1 + sin x cos x ) (\sin x - \cos x ) ( 1 + \sin x \cos x ) sin 2 x \sin ^2 x

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Daniel Ferreira
Nov 5, 2016

Bom! para resolver o problema proposto, fazemos uso da fatoração entre diferença entre cubos e a relação fundamental da trigonometria, veja:

sin 3 x cos 3 x = ( sin x cos x ) ( sin 2 x + sin x cos x + cos 2 x ) = ( sin x cos x ) ( sin 2 x + cos 2 x sin 2 x + cos 2 x = 1 + sin x cos x ) = \mathsf{\sin^3 x - \cos^3 x =} \\\\ \mathsf{(\sin x - \cos x) \cdot (\sin^2 x + \sin x \cdot \cos x + \cos^2 x)} = \\\\ \mathsf{(\sin x - \cos x) \cdot (\underbrace{\mathsf{\sin^2 x + \cos^2 x}}_{\mathsf{\sin^2 x + \cos^2 x = 1}} + \sin x \cdot \cos x) =}

( sin x cos x ) ( 1 + sin x cos x ) \boxed{\mathsf{(\sin x - \cos x) \cdot (1 + \sin x \cdot \cos x)}}

Roger Erisman
Aug 21, 2016

A^3 - B^3 factors as ( A - B ) (A^2 + A B + B^2 )

So (sin x - cos x) * ( sin^2 x + sin x * cos x + cos^2 x )

But sin^2 x + cos^2 x = 1

(sin x - cos x) * ( 1 + sin x * cos x )

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...