A geometry problem by Rahil Sehgal

Geometry Level pending

On A B C , \triangle ABC, X X and Y Y are points on the segments A B AB and A C , AC, respectively, such that A X : X B = 1 : 2 AX:XB = 1: 2 and A Y : Y C = 2 : 1. AY: YC = 2: 1. If the area of A X Y \triangle AXY is 10 , 10, then what is the area of A B C ? \triangle ABC?


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Andrew Hayes Staff
Mar 10, 2017

Let A X = x AX=x and let Y C = y . YC=y. Then X B = 2 x XB=2x and A Y = 2 y . AY=2y. Let m B A C = θ . m\angle BAC=\theta.

The area of A X Y \triangle AXY can be expressed in terms of x , x, y , y, and θ : \theta :

A A X Y = 1 2 ( x ) ( 2 y ) sin θ = x y sin θ . A_{\triangle AXY}=\frac{1}{2}(x)(2y)\sin{\theta}=xy\sin{\theta}.

The area of A B C \triangle ABC can also be expressed in terms of x , x, y , y, and θ : \theta :

A A B C = 1 2 ( 3 x ) ( 3 y ) sin θ = 9 2 x y sin θ . A_{\triangle ABC}=\frac{1}{2}(3x)(3y)\sin{\theta}=\frac{9}{2}xy\sin{\theta}.

Thus, A A B C = 9 2 A A X Y = 45 . A_{\triangle ABC}=\frac{9}{2}A_{\triangle AXY}=\boxed{45}.

Nice solution :) Thank u

Rahil Sehgal - 4 years, 3 months ago
Toshit Jain
Mar 11, 2017

G i v e n A B C i n w h i c h X a n d Y a r e p o i n t s o n A B a n d A C r e s p e c t i v e l y s u c h t h a t A X : X B = 1 : 2 a n d A Y : Y C = 2 : 1 a n d a r A X Y = 10 Given \space \triangle{ABC} \space in \space which \space X \space and \space Y \space are \space points \space on \space AB \space and \space AC \space respectively \space such \space that \space {AX\space \colon\space XB}\space={1 \space\colon\space 2} \space and \space{AY \space \colon\space YC} \space = \space {2 \space\colon\space 1} \space and \space ar\triangle{AXY}\space=\space 10 L e t t h e r e b e a p o i n t D o n A C s u c h t h a t A D : D C = 1 : 2 \rightarrow Let \space there \space be \space a \space point \space *D* \space on \space AC\space such \space that \space {AD \space\colon\space DC}\space=\space{1\space\colon\space2} B y S A S p r o p e r t y o f s i m i l a r i t y , A X D A B C \Rightarrow By \space SAS \space property \space of \space similarity \space , \space \boxed{\triangle{AXD}\space\sim\space\triangle{ABC}}

A D : A C = 1 : 3 A D = 1 3 A C \rightarrow \space{AD\space \colon\space AC}\space =\space {1 \space \colon \space 3} \space \therefore AD\space = \space \frac{1}{3}AC

A Y : A C = 2 : 3 A Y = 2 3 A C \rightarrow \space {AY\space \colon\space AC}\space=\space{2\space \colon\space 3} \space \therefore AY\space=\space \frac{2}{3}AC

D Y = A Y A D D Y = 1 3 A C = A D \rightarrow \space DY\space=\space {AY-AD} \space \Rightarrow DY \space=\space \frac{1}{3}AC \space=\space AD

I n A X Y , X D i s m e d i a n a r A X D = 10 2 = 5 In \space \triangle{AXY}\space ,\space XD \space is \space median\space \boxed{\therefore \space ar\triangle{AXD}\space=\space \frac{10}{2}\space=\space 5}

N o w , a r A X D : a r A B C = [ 1 : 3 ] 2 = 1 : 9 Now\space,\space {ar\triangle{AXD}\space \colon\space ar\triangle{ABC}}\space=\space [1\space \colon\space 3]^{2}\space=\space{1\space \colon\space 9}

a r A B C = 9 a r A X D = 9 × 5 = 45 \Rightarrow \space ar\triangle{ABC} \space=\space 9ar\triangle{AXD}\space=\space 9 \space\times\space 5 \space=\space 45

a r A B C = 45 \boxed{\therefore \space ar\triangle{ABC}\space=\space 45}

Hi, can you help me with this please: Exam question

Syed Hamza Khalid - 1 year, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...