On △ A B C , X and Y are points on the segments A B and A C , respectively, such that A X : X B = 1 : 2 and A Y : Y C = 2 : 1 . If the area of △ A X Y is 1 0 , then what is the area of △ A B C ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice solution :) Thank u
G i v e n △ A B C i n w h i c h X a n d Y a r e p o i n t s o n A B a n d A C r e s p e c t i v e l y s u c h t h a t A X : X B = 1 : 2 a n d A Y : Y C = 2 : 1 a n d a r △ A X Y = 1 0 → L e t t h e r e b e a p o i n t ∗ D ∗ o n A C s u c h t h a t A D : D C = 1 : 2 ⇒ B y S A S p r o p e r t y o f s i m i l a r i t y , △ A X D ∼ △ A B C
→ A D : A C = 1 : 3 ∴ A D = 3 1 A C
→ A Y : A C = 2 : 3 ∴ A Y = 3 2 A C
→ D Y = A Y − A D ⇒ D Y = 3 1 A C = A D
I n △ A X Y , X D i s m e d i a n ∴ a r △ A X D = 2 1 0 = 5
N o w , a r △ A X D : a r △ A B C = [ 1 : 3 ] 2 = 1 : 9
⇒ a r △ A B C = 9 a r △ A X D = 9 × 5 = 4 5
∴ a r △ A B C = 4 5
Hi, can you help me with this please: Exam question
Problem Loading...
Note Loading...
Set Loading...
Let A X = x and let Y C = y . Then X B = 2 x and A Y = 2 y . Let m ∠ B A C = θ .
The area of △ A X Y can be expressed in terms of x , y , and θ :
A △ A X Y = 2 1 ( x ) ( 2 y ) sin θ = x y sin θ .
The area of △ A B C can also be expressed in terms of x , y , and θ :
A △ A B C = 2 1 ( 3 x ) ( 3 y ) sin θ = 2 9 x y sin θ .
Thus, A △ A B C = 2 9 A △ A X Y = 4 5 .