Trigonometry (4)

Geometry Level 4

cos π 65 cos 2 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 \cos \dfrac{π}{65} \cos \dfrac{2π}{65} \cos \dfrac{4π}{65} \cos \dfrac{8π}{65} \cos \dfrac{16π}{65} \cos \dfrac{32π}{65}

Find the value of the expression above to 4 decimal places.


The answer is 0.0156.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 18, 2017

Consider the following:

P = cos π 65 cos 2 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 = sin π 65 cos π 65 cos 2 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 sin π 65 = sin 2 π 65 cos 2 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 2 sin π 65 = sin 4 π 65 cos 4 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 4 sin π 65 = sin 8 π 65 cos 8 π 65 cos 16 π 65 cos 32 π 65 8 sin π 65 = sin 16 π 65 cos 16 π 65 cos 32 π 65 16 sin π 65 = sin 32 π 65 cos 32 π 65 32 sin π 65 = sin 64 π 65 64 sin π 65 = sin ( π π 65 ) 64 sin π 65 Note that sin ( π x ) = sin x = sin π 65 64 sin π 65 = 1 64 = 0.015625 \begin{aligned} P & = \cos \frac \pi {65} \cos \frac {2\pi}{65} \cos \frac {4\pi}{65} \cos \frac {8\pi}{65} \cos \frac {16\pi}{65} \cos \frac {32\pi}{65} \\ & = \frac {{\color{#3D99F6}\sin \frac \pi {65}} \cos \frac \pi {65} \cos \frac {2\pi}{65} \cos \frac {4\pi}{65} \cos \frac {8\pi}{65} \cos \frac {16\pi}{65} \cos \frac {32\pi}{65}}{\color{#3D99F6}\sin \frac \pi {65}} \\ & = \frac {{\color{#3D99F6}\sin \frac {2\pi}{65}} \cos \frac {2\pi}{65} \cos \frac {4\pi}{65} \cos \frac {8\pi}{65} \cos \frac {16\pi}{65} \cos \frac {32\pi}{65}}{{\color{#3D99F6}2} \sin \frac \pi {65}} \\ & = \frac {{\color{#3D99F6}\sin \frac {4\pi}{65}} \cos \frac {4\pi}{65} \cos \frac {8\pi}{65} \cos \frac {16\pi}{65} \cos \frac {32\pi}{65}}{{\color{#3D99F6}4} \sin \frac \pi {65}} \\ & = \frac {{\color{#3D99F6}\sin \frac {8\pi}{65}} \cos \frac {8\pi}{65} \cos \frac {16\pi}{65} \cos \frac {32\pi}{65}}{{\color{#3D99F6}8} \sin \frac \pi {65}} \\ & = \frac {{\color{#3D99F6}\sin \frac {16\pi}{65}} \cos \frac {16\pi}{65} \cos \frac {32\pi}{65}}{{\color{#3D99F6}16} \sin \frac \pi {65}} \\ & = \frac {{\color{#3D99F6}\sin \frac {32\pi}{65}} \cos \frac {32\pi}{65}}{{\color{#3D99F6}32} \sin \frac \pi {65}} \\ & = \frac {\color{#3D99F6}\sin \frac {64\pi}{65}}{{\color{#3D99F6}64} \sin \frac \pi {65}} \\ & = \frac {\color{#3D99F6}\sin \left(\pi - \frac \pi{65}\right)}{64 \sin \frac \pi {65}} \quad \quad \small \color{#3D99F6} \text{Note that }\sin (\pi-x) = \sin x \\ & = \frac {\color{#3D99F6}\sin \frac \pi{65}}{64 \sin \frac \pi {65}} = \frac 1{64} = \boxed{0.015625} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...