A geometry problem by Rajdeep Bharati

Geometry Level 2

8 1 sin 2 ( x ) + 8 1 cos 2 ( x ) = 30 \large 81^{\sin^2(x)} + 81^{\cos^2(x)} = 30

If x x is an positive acute angle less than or equal to π 2 \dfrac\pi2 , find the values of x x which satisfy the equation above.

π 4 , π 6 \frac\pi4, \frac\pi6 π 4 , π 2 \frac\pi4, \frac\pi2 π 3 , π 4 \frac\pi3, \frac\pi4 π 3 , π 6 \frac\pi3 , \frac\pi6

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 13, 2015

Let y = 8 1 sin 2 x y = 81^{\sin^2{x}} . Then, we have:

8 1 sin 2 x + 8 1 cos 2 x = 30 8 1 sin 2 x + 8 1 1 sin 2 x = 30 8 1 sin 2 x + 81 8 1 sin 2 x = 30 y + 81 y = 30 y 2 30 y + 81 = 0 ( y 3 ) ( y 27 ) = 0 \begin{aligned} 81^{\sin^2{x}} + 81^{\cos^2{x}} & = 30 \\ 81^{\sin^2{x}} + 81^{1-\sin^2{x}} & = 30 \\ 81^{\sin^2{x}} + \frac{81}{81^{\sin^2{x}}} & = 30 \\ y + \frac{81}{y} & = 30 \\ y^2 - 30 y + 81 & = 0 \\ (y-3)(y-27) & = 0 \end{aligned}

y = { 3 4 sin 2 x = 3 1 4 sin 2 x = 1 sin x = 1 2 x = π 6 3 4 sin 2 x = 3 3 4 sin 2 x = 3 sin x = 3 2 x = π 3 \Rightarrow y = \begin{cases} 3^{4\sin^2{x}} = 3^1 & \Rightarrow 4\sin^2{x} = 1 & \Rightarrow \sin{x} = \frac{1}{2} & \Rightarrow x = \frac{\pi}{6} \\ 3^{4\sin^2{x}} = 3^3 & \Rightarrow 4\sin^2{x} = 3 & \Rightarrow \sin{x} = \frac{\sqrt{3}}{2} & \Rightarrow x = \frac{\pi}{3} \end{cases}

x = π 3 , π 6 \Rightarrow x = \boxed{\frac{\pi}{3}, \frac{\pi}{6}}

oh god i wrote 1/2 as1/[2^(1/2)]

Akash singh - 5 years, 9 months ago
Ryan Tamburrino
Aug 10, 2015

We begin with 8 1 sin 2 ( x ) + 8 1 cos 2 ( x ) = 3 4 sin 2 ( x ) + 3 4 cos 2 ( x ) = 30 81^{\sin^2(x)}+81^{\cos^2(x)} = 3^{4\sin^2(x)} + 3^{4\cos^2(x)}=30 So, essentially, we need to find two powers of 3 3 that add to 30 30 . A quick check tells us that this must be either 3 + 3 3 3+3^3 or 3 3 + 3 3^3+3 . Solving these systems: { 4 sin 2 ( x ) = 3 4 cos 2 ( x ) = 1 x = π 3 \begin{cases} 4\sin^2(x) = 3 \\ 4\cos^2(x)=1 \end{cases} \Rightarrow \boxed{x= \dfrac{\pi}{3}} { 4 sin 2 ( x ) = 1 4 cos 2 ( x ) = 3 x = π 6 \begin{cases} 4\sin^2(x) = 1 \\ 4\cos^2(x)=3 \end{cases} \Rightarrow \boxed{x= \dfrac{\pi}{6}} Hence the answer.

How can we check that 30 cannot be built by two non intergers number?

Jaka Ong - 5 years, 10 months ago

Log in to reply

If you let x = 8 1 sin 2 ( x ) x=81^{\sin^2(x)} then the first equation turns into a quadratic in x x which can be factored to find roots of x = 3 3 , 3 x=3^3, 3 . Which I realized Mr. Cheong has shown above, sorry!

Ryan Tamburrino - 5 years, 10 months ago

Log in to reply

Thank you. Get it already.

Jaka Ong - 5 years, 10 months ago

LHS=81^(sin^2 x)+81/(81^(sin^2 x))=30. Let 81^(sin^2 x)=alpha. Then we have alpha+81/alpha=30, i.e., alpha^2-30 alpha +81=0, => (alpha-27)(alpha-3)=0, i.e., 81^(sin^2 x)=27 or 81^(sin^2 x)=3, i.e., sin^2 x=3/4 or sin^2 x=1/2, yielding sin x=+ or - sqrt(3)/2, + or - 1/2, i.e., x=+ or - pi/3, +or - pi/6

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...