A geometry problem by Rakshit Joshi

Geometry Level 3

If ( a + b ) tan ( x y ) = ( a b ) tan ( x + y ) (a+b)\tan(x-y)=(a-b)\tan(x+y) , find the value of sin ( 2 x ) sin ( 2 y ) \dfrac{\sin(2x)}{\sin(2y)} in terms of a a and b b .

a b \frac ab 1 1 a b ab b a \frac ba

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 16, 2016

sin ( 2 x ) sin ( 2 y ) = 2 tan x 1 + tan 2 x × 1 + tan 2 y 2 tan y Using half-angle identity = tan x ( 1 + tan 2 y ) tan y ( 1 + tan 2 x ) \begin{aligned} \frac{\color{#3D99F6}{\sin (2x)}}{\color{#D61F06}{\sin (2y)}} & = \color{#3D99F6}{\frac{2\tan x}{1+\tan^2 x}} \times \color{#D61F06}{\frac{1+\tan^2 y}{2\tan y}} \quad \quad \small \text{Using half-angle identity} \\ & = \frac{\tan x (1+\tan^2 y)}{\tan y (1+\tan^2 x)} \end{aligned}

Now evaluating:

( a + b ) tan ( x y ) = ( a b ) tan ( x + y ) ( a + b ) ( tan x tan y ) 1 + tan x tan y = ( a b ) ( tan x + tan y ) 1 tan x tan y ( a + b ) ( tan x tan y ) ( 1 tan x tan y ) = ( a b ) ( tan x + tan y ) ( 1 + tan x tan y ) ( a + b ) ( tan x tan y tan 2 x tan y + tan x tan 2 y ) = ( a b ) ( tan x + tan y + tan 2 x tan y + tan x tan 2 y ) b ( tan x + tan x tan 2 y ) = a ( tan y + tan 2 x tan y ) tan x ( 1 + tan 2 y ) tan y ( 1 + tan 2 x ) = a b sin ( 2 x ) sin ( 2 y ) = a b \begin{aligned} (a+b)\tan (x-y) & = (a-b)\tan(x+y) \\ \frac{(a+b)(\tan x - \tan y)}{1+\tan x \tan y} & = \frac{(a-b)(\tan x + \tan y)}{1-\tan x \tan y} \\ (a+b)(\tan x - \tan y)(1-\tan x \tan y) & = (a-b)(\tan x + \tan y)(1 + \tan x \tan y) \\ (a+b)(\tan x - \tan y -\tan^2 x \tan y + \tan x \tan^2 y) & = (a-b)(\tan x + \tan y +\tan^2 x \tan y + \tan x \tan^2 y) \\ b(\tan x + \tan x \tan^2 y) & = a(\tan y + \tan^2 x \tan y) \\ \frac{\tan x (1+\tan^2 y)}{\tan y (1+\tan^2 x)} & = \frac{a}{b} \\ \implies \frac{\sin (2x)}{\sin (2y)} & = \boxed{\dfrac{a}{b}} \end{aligned}

To the point solution... :-) Did same

Rakshit Joshi - 5 years, 1 month ago

Beautiful solution as always. Excellent use of the half-angle identity.

Also, @Chew-Seong Cheong , thanks for helping with LaTeXing of problem statements by others. It's a huge help. One thing though, we would rather not LaTeX individual numbers like this 3. 3. Instead, just leave them outside the LaTeX environment. Thanks so much! :)

Andrew Ellinor - 5 years, 1 month ago

Log in to reply

Thanks for the comments. I got the point on individual numbers.

Chew-Seong Cheong - 5 years, 1 month ago

a + b a b = tan ( x + y ) tan ( x y ) \dfrac{a+b}{a-b} = \dfrac{\tan(x+y)}{\tan(x-y)}

Applying componendo-dividendo,
a b = tan ( x + y ) + tan ( x y ) tan ( x + y ) tan ( x y ) \dfrac{a}{b} = \dfrac{\tan(x+y)+ \tan(x-y)}{\tan(x+y) - \tan(x-y)}
a b = sin ( x + y ) cos ( x y ) + cos ( x + y ) sin ( x y ) cos ( x + y ) cos ( x y ) sin ( x + y ) cos ( x y ) cos ( x + y ) sin ( x y ) cos ( x + y ) cos ( x y ) \dfrac{a}{b} = \dfrac{\dfrac{\sin(x+y)\cos(x-y) + \cos(x+y)\sin(x-y)}{\cos(x+y)\cos(x-y)}}{\dfrac{\sin(x+y)\cos(x-y) - \cos(x+y)\sin(x-y)}{\cos(x+y)\cos(x-y)}}
a b = sin ( x + y + x y ) sin ( x + y ( x y ) ) = sin ( 2 x ) sin ( 2 y ) \dfrac{a}{b} = \dfrac{\sin(x+y+x-y)}{\sin(x+y-(x-y))} = \dfrac{\sin(2x)}{\sin(2y)}


Excellent use of COMPONENDO DIVIDENDO!!

Rakshit Joshi - 5 years, 1 month ago

Log in to reply

@Rakshit Joshi

Don't you think you should have specified the constraint : :-

x ( β + α + 1 ) π 2 , y ( β α ) π 2 x\,≠\,(\beta+\alpha+1)\cdot \dfrac{\pi}{2}\,\,\,\,,\,\,\,\,y\,≠\,(\beta-\alpha)\cdot \dfrac{\pi}{2} for some ( α , β ) ϵ Z 2 (\alpha,\beta)\,\,\epsilon\,\,\mathbb{Z}^{2} along with a b a\,≠\,b .

Aditya Sky - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...