A geometry problem by Rishabh Jain

Geometry Level 3

arctan 1 3 + arctan 1 7 + arctan 1 13 + arctan 1 21 + . . . . . . . . u p t o \arctan { \frac { 1 }{ 3 } } +\arctan { \frac { 1 }{ 7 } + } \arctan { \frac { 1 }{ 13 } +\arctan { \frac { 1 }{ 21 } + } } ........upto\quad \infty find the above sum .

π 4 \frac { \pi }{ 4 } π 8 \frac { \pi }{ 8 } π 2 \frac { \pi }{ 2 } π 3 \frac { \pi }{ 3 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rishabh Jain
Jun 25, 2014

t h e p a t t e r n i s a s f o l l o w s : 1 + 1 × 2 , 1 + 2 × 3 , 1 + 3 × 4 , . . . . the\quad pattern\quad is\quad as\quad follows\quad :\quad 1+1\times 2,1+2\times 3,1+3\times 4,.... then using the formula of a r c t a n ( n + 1 ) a r c t a n ( n ) arctan{ (n+1)-arctan{ (n) } } cancelling the terms you will get a r c t a n ( n + 1 ) a r c t a n ( 1 ) arctan{ (n+1)-arctan{ (1) } } then apply limit where n approaches \infty you will get the final answer

That's very interesting! The key step is the identity

A r c T a n ( 1 n 2 + n + 1 ) = ArcTan(\dfrac { 1 }{ { n }^{ 2 }+n+1 } )=

A r c T a n ( n + 1 ) A r c T a n ( n ) ArcTan(n+1)-ArcTan(n)

I'm pretty sure there's a nice graphical illustration of how this works.

Michael Mendrin - 6 years, 9 months ago

Log in to reply

yes sir you are amazingly good at math

samarth sangam - 6 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...