Awesome Geometry!

Geometry Level 5

The ratios of the lengths of the sides B C BC and A C AC of A B C \triangle ABC to the radius of its circumscribed circle are equal to 2 and 1.5 respectively.

Find the ratio of the lengths of the bisectors of the interior angles B B and C C .

If the answer can be expressed in the form a b a c d \dfrac{a\sqrt{b} - a\sqrt{c}}{d} , where a a , b b , c c and d d are positive integers with a a and b b being square free, find ( a + b ) ( c + d ) (a+b) - (c+d) .


Try out a similar problem .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Ahmad Saad
Jun 2, 2016

Nice solution ,+1! @ahmad saad

Rishabh Tiwari - 5 years ago

Least amount of computations! (+1)

A Former Brilliant Member - 4 years, 12 months ago

Let AB=z, BC=x, CA=y, Radius of circumcircle=R. S=2R in the sketch. S o x = 2 R , y = 3 2 R 4 3 y = 2 R . U s i n g e x t e n d e d S i n L a w , 2 R = x S i n A = y S i n B . E q u a t i n g t h e t w o v a l u e s o f x , a n d y w e g e t : S i n A = 1 , s o A = 90 , S i n B = 3 4 , S i n C = 7 4 . 4 2 3 2 = 7 S o A B C i s a r i g h t Δ 7 3 4. C o s B = 7 4 , C o s C = 3 4. B u t C o s 1 2 θ = 1 + C o s θ 2 . C o s 1 2 B = 1 + C o s B 2 = 1 + 7 4 2 , C o s 1 2 C = 1 + C o s C 2 = 1 + 3 4 2 B E = 7 C o s 1 2 B = 7 1 + 7 4 2 = 7 4 + 7 8 C F = 3 C o s 1 2 C = 3 1 + 3 4 2 = 3 4 + 3 8 \text{Let AB=z, BC=x, CA=y, Radius of circumcircle=R. S=2R in the sketch.}\\ So\ x=2R,\ y=\frac 3 2*R \implies\ \frac 4 3 *y=2R.\\ Using\ extended\ Sin\ Law,\ \ 2R=\dfrac x {SinA} =\dfrac y{SinB}.\\ Equating\ the\ two\ values\ of\ x,\ and\ y \ we\ get:-\\ SinA=1, \ so\ A=90, \ \ \ \ SinB=\frac 3 4,\ \ \implies\ SinC=\frac {\sqrt7} 4.\ \ \ \ \ \ \ \ \ \because\ \sqrt{4^2-3^2}=\sqrt7\\ So\ ABC\ is\ a\ right\ \Delta\ \sqrt7\!-\!3\!-\!4. CosB=\dfrac{\sqrt7}4,\ \ CosC=\sqrt 3 4.\\ But\ Cos\frac 1 2 \theta=\sqrt{\dfrac{1+Cos\theta} 2}.\\ \therefore\ Cos\frac12B=\sqrt{\dfrac{1+CosB} 2}=\sqrt{\dfrac{1+\frac{\sqrt7}4} 2},\ \ \ \ \ \ \ \ Cos\frac12C=\sqrt{\dfrac{1+CosC} 2}=\sqrt{\dfrac{1+\frac 34} 2}\\ \therefore\ BE=\dfrac{\sqrt7}{ Cos\frac12B}= \dfrac{\sqrt7}{ \sqrt{\dfrac{1+\frac{\sqrt7}4} 2} }= \dfrac{\sqrt7}{ \sqrt{\dfrac{4+\sqrt7} 8} }\ \ \ \ \ \ \ \ CF= \dfrac 3 { Cos\frac12C}=\dfrac 3{ \sqrt{\dfrac{1+\frac 3 4} 2} }= \dfrac 3 { \sqrt{\dfrac{4+3 } 8} } \\ B E C F = 7 4 + 7 8 3 7 8 = 7 4 + 7 3 = 7 4 7 4 + 7 4 7 3 = 7 9 4 7 = 7 9 ( 7 2 1 2 ) 2 = 7 14 7 2 18 = a b a c d ( a + b ) ( c + d ) = ( 7 + 14 ) ( 2 + 18 ) = 1 \therefore\ \dfrac {BE}{CF}=\dfrac{\ \dfrac {\sqrt7} { \sqrt{\dfrac{4+\sqrt7} 8} } \ }{ \dfrac 3{ \sqrt{\dfrac 7 8} }}= \dfrac{ \dfrac 7 { \sqrt{4+\sqrt7} } }3=\dfrac{ \dfrac {7*\sqrt{4-\sqrt7}} { \sqrt{4+\sqrt7}*\sqrt{4-\sqrt7} } }3=\frac 7 9* \sqrt{4-\sqrt7}\\ =\frac 7 9* \sqrt{( \sqrt {\frac 7 2} - \sqrt{\frac 1 2} )^2 }=\dfrac{7\sqrt{14} - 7\sqrt2}{18}=\dfrac {a\sqrt b - a\sqrt c}{d}\\ (a+b) - (c+d)=(7+14) -(2+18) =\ \ \ \ \color{#D61F06}{1}

Very nice approach,+1! , in the second last line, you forgot to put 7 before root2 , Otherwise perfect solution.!

Rishabh Tiwari - 5 years ago

Log in to reply

Thank you for the correction.

Niranjan Khanderia - 5 years ago

Log in to reply

Perfect now!

Rishabh Tiwari - 5 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...