A geometry problem by ritwik jain

Geometry Level 4

Let A B C ABC be an isosceles triangle with A B = A C AB = AC . Let T T be its circumcircle centered at O O . Let C O CO meet T T at D D . Draw a line parallel to A C AC through D D . Let it intersect A B AB at E E . Suppose A E : E B = 2 : 1 AE : EB = 2 : 1 . Find the measure of the A B C \angle ABC in degrees.


The answer is 60.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
May 12, 2017

Let the circumradius be 1, the extension of D E DE meets B C BC at F F and A B C = θ \angle ABC = \theta .

Then B A O = 1 2 B A C = 18 0 2 θ 2 = 9 0 θ \angle BAO = \dfrac 12 \angle BAC = \dfrac {180^\circ-2\theta}2 = 90^\circ-\theta and O C B = O B C = θ ( 9 0 θ ) = 2 θ 9 0 \angle OCB = \angle OBC = \theta - (90^\circ - \theta) = 2\theta - 90^\circ .

Since A C D F AC||DF , E B F A B C \implies \triangle EBF \equiv \triangle ABC , so that E F B = E B F = θ \angle EFB = \angle EBF = \theta ; D F C = 18 0 θ \angle DFC = 180^\circ - \theta and C D F = E F B O C B = θ ( 2 θ 9 0 ) = 9 0 θ \angle CDF = \angle EFB - \angle OCB = \theta - (2\theta - 90^\circ) = 90^\circ - \theta .

Since A C D F AC || DF , C F : F B = A E : E B = 2 : 1 \implies CF:FB = AE:EB = 2:1 , C F = 2 3 B C = 2 2 cos ( 2 θ 9 0 ) 3 = 4 cos ( 9 0 2 θ ) 3 = 4 sin 2 θ 3 \implies CF = \dfrac 23 BC = \dfrac {2\cdot 2\cos (2\theta - 90^\circ)}3 = \dfrac {4\cos (90^\circ - 2\theta)}3 = \dfrac {4\sin 2\theta}3

Using sine rule , we have:

sin D F C C D = sin C D F C F sin ( 18 0 θ ) 2 = sin ( 9 0 θ ) 4 3 sin 2 θ sin θ = 3 cos θ 4 sin θ cos θ sin 2 θ = 3 4 sin θ = 3 2 θ = 60 \begin{aligned} \frac {\sin \angle DFC}{CD} & = \frac {\sin \angle CDF}{CF} \\ \frac {\sin (180^\circ - \theta)}2 & = \frac {\sin (90^\circ - \theta) }{\frac 43 \sin 2\theta} \\ \sin \theta & = \frac {3\cos \theta}{4\sin \theta \cos \theta} \\ \sin^2 \theta & = \frac 34 \\ \sin \theta & = \frac {\sqrt 3}2 \\ \implies \theta & = \boxed{60}^\circ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...