A geometry problem by Sakanksha Deo

Geometry Level 3

A + B + C + D + E = ? \angle{A} + \angle{B} + \angle{C} + \angle{D} + \angle{E} = ?


The answer is 180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Sakanksha Deo
Feb 23, 2015

Write a solution. A + C + A F C = 180 \angle{A} + \angle{C} + \angle{AFC} = 180 ... (1)

B + D + E = B F D = A F C \angle{B} + \angle{D} + \angle{E} = \angle{BFD} = \angle{AFC} ... (2)

From (1) and (2) , we get ,

A + B + C + D + E = 180 \angle{A} + \angle{B} + \angle{C} + \angle{D} + \angle{E} = \boxed{180}

Mohit Gupta
Mar 2, 2015

Apply exterior angle property in two triangles. Then use angle sum prop.

Method 1:

Let 1 , 2 , 3 , 4 1,2,3,4 and 5 5 be the angles of the irregular pentagram .

By the Exterior Angle Theorem , F G D = 1 + 3 \angle FGD=1+3 because 1 \angle 1 and 3 \angle 3 are remote angles. It follows that G F D = 2 + 4 \angle GFD=2+4 since it is an exterior angle with remote angles 2 2 and 4 4 . The sum of the interior angles of F G D = 1 + 3 + 2 + 4 + 5 = 18 0 \triangle FGD=1+3+2+4+5=180^\circ . But these are the angles of the pentagram. Hence, the sum of the angles of the pentagram is 18 0 \boxed{180^\circ} .

Method 2:

Consider the diagram on the above.

v = 180 ( b + d ) v=180-(b+d)

w = 180 ( c + e ) w=180-(c+e)

x = 180 ( a + d ) x=180-(a+d)

y = 180 ( b + e ) y=180-(b+e)

z = 180 ( a + c ) z=180-(a+c)

We know that v + w + x + y + z = 540 v+w+x+y+z=540 . So

180 ( b + d ) + 180 ( c + e ) + 180 ( a + d ) + 180 ( b + e ) + 180 ( a + c ) = 540 180-(b+d) + 180-(c+e) + 180-(a+d) + 180-(b+e) + 180-(a+c) = 540

900 2 ( a + b + c + d + e ) = 540 900 - 2(a+b+c+d+e)=540

900 540 = 2 ( a + b + c + d + e ) 900-540=2(a+b+c+d+e)

360 = 2 ( a + b + c + d + e ) 360=2(a+b+c+d+e)

a + b + c + d + e = a+b+c+d+e= 180 \boxed{180}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...