Window of my soul

Geometry Level 4

In the figure above, area of circle is 50 and area of triangle is 15.

If the value of sin θ + sin α + sin β \sin\theta + \sin\alpha + \sin\beta equal to m n π \dfrac mn \pi for coprime positive integers m m and n n , find the value of m + n m+n .


The answer is 8.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sakanksha Deo
Mar 9, 2015

Let the radius of the circle be r,

Area of cilcle = 50 = π r 2 50 = \pi r^{2} ...... (1)

Now,

Ar( PQR ) = ar( OPQ ) + ar( OQR ) ar( OPR )

15 = 1 2 r 2 sin α + 1 2 r 2 sin θ + 1 2 r 2 sin β \Rightarrow 15 = \frac{1}{2} r^{2} \sin\alpha + \frac{1}{2} r^{2} \sin\theta + \frac{1}{2} r^{2} \sin\beta

( sin α + sin β + sin θ ) = 30 r 2 \Rightarrow (\sin\alpha + \sin\beta + \sin\theta )= \frac{30}{ r^{2}}

From (1),

sin α + sin θ + sin β = 3 π 5 = 3 π 5 \Rightarrow \sin\alpha + \sin\theta + \sin\beta = \frac{3 \pi }{5} = \frac{3 \pi }{5}

m + n = 8 \boxed{8}

Mine too was a similar approach.. :)

Rishabh Tripathi - 6 years, 2 months ago

I loved the problem sir.

Sathvik Acharya - 4 years, 2 months ago

Can you please tell me the source?

Sathvik Acharya - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...