Cosine problem which relate to sine

Geometry Level 4

63 sec ( π 33 ) sec ( 2 π 33 ) sec ( 4 π 33 ) sec ( 8 π 33 ) sec ( 16 π 33 ) 63\sec \left(\frac{\pi}{33}\right) \sec \left(\frac{2\pi}{33}\right) \sec\left(\frac{4\pi}{33} \right) \sec \left(\frac{8\pi}{33} \right) \sec \left(\frac{16\pi}{33}\right)

Calculate the value of the expression above without using calculator.


The answer is 2016.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

P = 63 sec π 33 sec 2 π 33 sec 4 π 33 sec 8 π 33 sec 16 π 33 = 63 cos π 33 cos 2 π 33 cos 4 π 33 cos 8 π 33 cos 16 π 33 = 63 sin π 33 sin π 33 cos π 33 cos 2 π 33 cos 4 π 33 cos 8 π 33 cos 16 π 33 = 63 2 sin π 33 sin 2 π 33 cos 2 π 33 cos 4 π 33 cos 8 π 33 cos 16 π 33 = 63 2 2 sin π 33 sin 4 π 33 cos 4 π 33 cos 8 π 33 cos 16 π 33 = 63 2 3 sin π 33 sin 8 π 33 cos 8 π 33 cos 16 π 33 = 63 2 4 sin π 33 sin 16 π 33 cos 16 π 33 = 63 2 5 sin π 33 sin 32 π 33 Note that sin ( π x ) = sin x = 63 2 5 sin π 33 sin π 33 = 63 2 5 = 63 32 = 2016 \begin{aligned} P & = 63 \sec \frac \pi{33} \sec \frac {2\pi}{33} \sec \frac {4\pi}{33} \sec \frac {8\pi}{33} \sec \frac {16\pi}{33} \\ & = \frac {63}{\cos \frac \pi{33} \cos \frac {2\pi}{33} \cos \frac {4\pi}{33} \cos \frac {8\pi}{33} \cos \frac {16\pi}{33}} \\ & = \frac {63 \sin \frac \pi{33} }{\sin \frac \pi{33}\cos \frac \pi{33} \cos \frac {2\pi}{33} \cos \frac {4\pi}{33} \cos \frac {8\pi}{33} \cos \frac {16\pi}{33}} \\ & = \frac {63 \cdot 2 \sin \frac \pi{33} }{\sin \frac {2\pi}{33} \cos \frac {2\pi}{33} \cos \frac {4\pi}{33} \cos \frac {8\pi}{33} \cos \frac {16\pi}{33}} \\ & = \frac {63 \cdot 2^2 \sin \frac \pi{33}}{\sin \frac {4\pi}{33} \cos \frac {4\pi}{33} \cos \frac {8\pi}{33} \cos \frac {16\pi}{33}} \\ & = \frac {63 \cdot 2^3 \sin \frac \pi{33}}{\sin \frac {8\pi}{33} \cos \frac {8\pi}{33} \cos \frac {16\pi}{33}} \\ & = \frac {63 \cdot 2^4 \sin \frac \pi{33}}{\sin \frac {16\pi}{33} \cos \frac {16\pi}{33}} \\ & = \frac {63 \cdot 2^5 \sin \frac \pi{33}}{\color{#3D99F6}\sin \frac {32\pi}{33}} & \small {\color{#3D99F6}\text{Note that }\sin (\pi-x) = \sin x} \\ & = \frac {63 \cdot 2^5 \sin \frac \pi{33}}{\color{#3D99F6}\sin \frac {\pi}{33}} \\ & = 63 \cdot 2^5 = 63 \cdot 32 = \boxed{2016} \end{aligned}

that's nutty

John Smith - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...