△ A B C has ∠ A = 4 5 ∘ and ∠ B = 3 0 ∘ . A line D E with D on A B and ∠ A D E = 6 0 ∘ , divides △ A B C into two pieces of equal area.
In the figure above,What is the ratio of A B A D ?
Give your answer to 3 decimal places.
Note : The figure above may not be accurate, perhaps E is on C B instead of A C .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
D i v i d e t h e t r i a n g l e A B C b y d r a w i n g t h e a l t i t u d e f r o m C t o s i d e A B . C a l l t h e f o o t o f t h e a l t i t u d e F . T h i s c r e a t e s t w o r i g h t a n g l e d t r i a n g l e s △ A C F a n d △ B C F . L e t t h e l e n g t h o f t h e a l t i t u d e C F b e 1 . U s i n g o u r t r i g o n o m e t r i c f u n c t i o n s w e f i n d A B = 1 + 3 , B C = 2 , a n d A C = 2 . T h e r e f o r e t h e A r e a o f △ A B C = 2 1 + 3 . T h i s m e a n s t h a t D E d i v i d e s t h e t r i a n g l e i n t o e q u a l a r e a s o f 4 1 + 3 . U s i n g t h i s i n f o r m a t i o n i t i s c l e a r t h a t E m u s t l i e o n A C . N o w w e h a v e △ A D E . W e f i n d t h e l e n g t h s o f t h e s i d e s o f △ A D E t h e s a m e w a y w e f o u n d i t f o r △ A B C , b y d i v i d i n g i t u s i n g a n a l t i t u d e f r o m E t o A D . L e t t h e l e n g t h o f t h i s a l t i t u e b e p . W e o b t a i n A D = 3 ( 3 + 3 ) p , D E = 3 2 p 3 , A E = p 2 . ∴ 4 1 + 3 = 2 1 × p 2 × 3 2 p 3 × sin 7 5 = > p = 2 4 3 ∴ A B A D = 1 + 3 3 3 + 3 × 2 4 3 = 4 1 2 1 ≈ 0 . 5 3 7 .
Problem Loading...
Note Loading...
Set Loading...
Draw h = 1 = CG ⊥ AB, and CF || DE, F on AB.
S o l v i n g r i g h t Δ s w i t h h e i g h t h = 1 .
I n Δ C A G , A G = 1 , ∴ A 1 = 2 1 ∗ h ∗ A G = 2 1 . I n Δ C G F , G F = 3 1 , ∴ A 2 = 2 1 ∗ h ∗ G F = 2 ∗ 3 1 . A r e a Δ C A F = A 1 + A 2 = 2 1 + 2 ∗ 3 1 = 2 1 ∗ 3 1 + 3 . I n Δ C G B , G B = 3 , ∴ A B = 1 + 3 , A 1 + A 2 + A 3 = 2 1 ∗ h ∗ A B = 2 1 + 3 . ∴ A r e a Δ E A D = 2 1 ∗ ( A 1 + A 2 + A 3 ) = 4 1 + 3 . G i v e n c o n d i t i o n . Δ E A D Δ C A F . L e t K 2 = Δ C A F Δ E A D = 2 1 ∗ 3 1 + 3 4 1 + 3 = 2 3 . A B A D = A B A F ∗ K = ( A G + G F ) ∗ A B K = ( 1 + 3 1 ) ∗ 1 + 3 2 3 = 2 ∗ 3 1 = 0 . 5 3 7 2 8