A geometry problem by Walid Mustafa

Geometry Level 5

In the figure above, A B C \triangle ABC has A = 4 5 \angle A = 45^\circ and B = 3 0 \angle B = 30^\circ . A line D E DE with D D on A B AB and A D E = 6 0 \angle ADE = 60^\circ , divides A B C \triangle ABC into two pieces of equal area.

What is the ratio of A D A B \dfrac{AD}{AB} ?

Give your answer to 3 decimal places.

Note : The figure above may not be accurate, perhaps E E is on C B CB instead of A C AC .


The answer is 0.537.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Draw h = 1 = CG \bot AB, and CF || DE, F on AB.
S o l v i n g r i g h t Δ s w i t h h e i g h t h = 1. Solving ~right~ \Delta s ~ with ~ height ~~h=1. \\
I n Δ C A G , A G = 1 , A 1 = 1 2 h A G = 1 2 . I n Δ C G F , G F = 1 3 , A 2 = 1 2 h G F = 1 2 3 . A r e a Δ C A F = A 1 + A 2 = 1 2 + 1 2 3 = 1 2 1 + 3 3 . I n Δ C G B , G B = 3 , A B = 1 + 3 , A 1 + A 2 + A 3 = 1 2 h A B = 1 + 3 2 . A r e a Δ E A D = 1 2 ( A 1 + A 2 + A 3 ) = 1 + 3 4 . G i v e n c o n d i t i o n . Δ E A D Δ C A F . L e t K 2 = Δ E A D Δ C A F = 1 + 3 4 1 2 1 + 3 3 = 3 2 . In ~\Delta ~CAG,~~\color{#3D99F6}{AG = 1}, ~~~\therefore ~ ~ A_1=\frac 1 2 *h*AG= \dfrac 1 2.\\ In ~\Delta ~CGF,~~\color{#3D99F6}{GF =\dfrac 1 {\sqrt3}}, ~~~\therefore ~ ~ A_2=\frac 1 2 *h*GF=\dfrac 1 {2*\sqrt3}.\\ Area~\Delta ~CAF=A_1+A_2=\dfrac 1 2 +\dfrac 1 {2* \sqrt3}=\frac 1 2*\dfrac {1 +\sqrt3} { \sqrt3}.\\ In ~\Delta ~CGB,~~GB = \sqrt3, ~~~\therefore ~ ~\color{#EC7300}{AB=1+\sqrt3}, ~~ A_1+A_2+A_3=\frac 1 2 *h*AB=\dfrac {1+\sqrt3} 2. \\ \therefore~Area~\Delta ~EAD=\frac 1 2 * (A_1+A_2+A_3)=\dfrac {1+\sqrt3} {4}. ~~Given ~ condition.\\ \Delta~EAD\text{~} \Delta ~CAF.~~~~~~\\ Let~K^2=\dfrac{\Delta~EAD}{ \Delta ~CAF}=\dfrac{\dfrac {1+\sqrt3}4}{ \frac 1 2*\dfrac {1 +\sqrt3} { \sqrt3}}=\dfrac {\sqrt3} 2. \\ A D A B = A F K A B = ( A G + G F ) K A B \dfrac{AD}{AB}=\dfrac{AF*K}{AB}=(AG+GF)*\dfrac K {AB} = ( 1 + 1 3 ) 3 2 1 + 3 = 1 2 3 = 0.53728 =(1+\frac 1 {\sqrt3} ) * \dfrac { \sqrt { \dfrac {\sqrt3} 2 } } {1+\sqrt3}= \dfrac 1 {\sqrt{2*\sqrt3} } = \color{#D61F06}{0.53728 }

Walid Mustafa
Jan 4, 2015

D i v i d e t h e t r i a n g l e A B C b y d r a w i n g t h e a l t i t u d e f r o m C t o s i d e A B . C a l l t h e f o o t o f t h e a l t i t u d e F . T h i s c r e a t e s t w o r i g h t a n g l e d t r i a n g l e s A C F a n d B C F . L e t t h e l e n g t h o f t h e a l t i t u d e C F b e 1. U s i n g o u r t r i g o n o m e t r i c f u n c t i o n s w e f i n d A B = 1 + 3 , B C = 2 , a n d A C = 2 . T h e r e f o r e t h e A r e a o f A B C = 1 + 3 2 . T h i s m e a n s t h a t D E d i v i d e s t h e t r i a n g l e i n t o e q u a l a r e a s o f 1 + 3 4 . U s i n g t h i s i n f o r m a t i o n i t i s c l e a r t h a t E m u s t l i e o n A C . N o w w e h a v e A D E . W e f i n d t h e l e n g t h s o f t h e s i d e s o f A D E t h e s a m e w a y w e f o u n d i t f o r A B C , b y d i v i d i n g i t u s i n g a n a l t i t u d e f r o m E t o A D . L e t t h e l e n g t h o f t h i s a l t i t u e b e p . W e o b t a i n A D = ( 3 + 3 ) p 3 , D E = 2 p 3 3 , A E = p 2 . 1 + 3 4 = 1 2 × p 2 × 2 p 3 3 × sin 75 = > p = 3 4 2 A D A B = 3 + 3 3 × 3 4 2 1 + 3 = 1 12 4 0.537 . Divide\quad the\quad triangle\quad ABC\quad by\quad drawing\quad the\quad altitude\quad from\quad C\quad \\ to\quad side\quad AB.\quad Call\quad the\quad foot\quad of\quad the\quad altitude\quad F.\quad This\quad creates\\ two\quad right\quad angled\quad triangles\quad \triangle ACF\quad and\quad \triangle BCF.\quad Let\quad the\quad \\ length\quad of\quad the\quad altitude\quad CF\quad be\quad 1.\quad Using\quad our\quad trigonometric\\ functions\quad we\quad find\quad AB=1+\sqrt { 3 } ,\quad BC=\quad 2,\quad and\quad AC=\sqrt { 2 } .\quad \\ Therefore\quad the\quad Area\quad of\quad \triangle ABC=\frac { 1+\sqrt { 3 } }{ 2 } .\\ This\quad means\quad that\quad DE\quad divides\quad the\quad triangle\quad into\quad equal\quad areas\quad \\ of\quad \frac { 1+\sqrt { 3 } }{ 4 } .\quad Using\quad this\quad information\quad it\quad is\quad clear\quad that\quad E\quad \\ must\quad lie\quad on\quad AC.\\ \\ Now\quad we\quad have\quad \triangle ADE.\quad We\quad find\quad the\quad lengths\quad of\quad the\quad sides\quad \\ of\quad \triangle ADE\quad \quad the\quad same\quad way\quad we\quad found\quad it\quad for\quad \triangle ABC,\quad by\quad \\ dividing\quad it\quad using\quad an\quad altitude\quad from\quad E\quad to\quad AD.\quad Let\quad the\quad \\ length\quad of\quad this\quad altitue\quad be\quad p.\\ \\ We\quad obtain\quad AD=\frac { (3+\sqrt { 3 } )p }{ 3 } ,\quad DE=\frac { 2p\sqrt { 3 } }{ 3 } ,\quad AE=p\sqrt { 2 } .\\ \\ \therefore \quad \frac { 1+\sqrt { 3 } }{ 4 } =\frac { 1 }{ 2 } \times p\sqrt { 2 } \times \frac { 2p\sqrt { 3 } }{ 3 } \times \sin { 75 } \\ =>\quad p=\frac { \sqrt [ 4 ]{ 3 } }{ \sqrt { 2 } } \\ \therefore \quad \quad \frac { AD }{ AB } =\frac { \frac { 3+\sqrt { 3 } }{ 3 } \times \frac { \sqrt [ 4 ]{ 3 } }{ \sqrt { 2 } } }{ 1+\sqrt { 3 } } =\frac { 1 }{ \sqrt [ 4 ]{ 12 } } \approx \boxed { 0.537 } .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...