A geometry problem by Wildan Bagus Wicaksono

Geometry Level 3

Build flat A B C D ABCD below is trapezoidal with A B AB parallel to D C DC . Point E E and F F lie on the C D CD so that A D AD is parallel to B E BE and A F AF parallel to B C BC . Point H H is the intersection of A C AC and B E BE . If the length A B = 4 AB = 4 cm and length C D = 10 CD = 10 cm, determine the ratio of triangle A G H AGH and trapezoidal area.

9 : 107 9 : 107 8 : 105 8 : 105 3 : 103 3 : 103 7 : 113 7 : 113 1 : 106 1 : 106

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

We get it

h 1 + h 2 = h h 3 + h 4 = h { h }_{ 1 }+{ h }_{ 2 }=h\\ { h }_{ 3 }+{ h }_{ 4 }=h

The E F H EFH triangle is similar to D F A DFA triangle.

6 h = 2 h 1 3 h 1 = h h 1 = 1 3 h h 2 = 2 3 h \frac { 6 }{ h } =\frac { 2 }{ { h }_{ 1 } } \\ 3{ h }_{ 1 }=h\\ { h }_{ 1 }=\frac { 1 }{ 3 } h\\ { h }_{ 2 }=\frac { 2 }{ 3 } h

The E C G ECG triangle is similar to D C A DCA triangle.

10 h = 6 h 3 3 h = 5 h 3 h 3 = 3 5 h h 4 = 2 5 \frac { 10 }{ h } =\frac { 6 }{ { h }_{ 3 } } \\ 3h=5{ h }_{ 3 }\\ { h }_{ 3 }=\frac { 3 }{ 5 } h\\ { h }_{ 4 }=\frac { 2 }{ 5 }

Area of triangle A G H AGH is

Ratio of triangle A G H AGH and trapezoidal A B C D ABCD area is

[ A G H ] [ A B C D ] = [ A B H ] [ A B G ] A B + C D 2 h [ A G H ] [ A B C D ] = 1 2 4 2 3 t 1 2 4 2 5 h 4 + 10 2 h [ A G H ] [ A B C D ] = 4 3 t 4 5 h 14 2 h [ A G H ] [ A B C D ] = 20 12 15 h 7 h [ A G H ] [ A B C D ] = 8 15 7 [ A G H ] [ A B C D ] = 8 105 \frac { \left[ AGH \right] }{ \left[ ABCD \right] } =\frac { \left[ ABH \right] -\left[ ABG \right] }{ \frac { AB+CD }{ 2 } h } \\ \frac { \left[ AGH \right] }{ \left[ ABCD \right] } =\frac { \frac { 1 }{ 2 } \cdot 4\cdot \frac { 2 }{ 3 } t-\frac { 1 }{ 2 } \cdot 4\cdot \frac { 2 }{ 5 } h }{ \frac { 4+10 }{ 2 } h } \\ \frac { \left[ AGH \right] }{ \left[ ABCD \right] } =\frac { \frac { 4 }{ 3 } t-\frac { 4 }{ 5 } h }{ \frac { 14 }{ 2 } h } \\ \frac { \left[ AGH \right] }{ \left[ ABCD \right] } =\frac { \frac { 20-12 }{ 15 } h }{ 7h } \\ \frac { \left[ AGH \right] }{ \left[ ABCD \right] } =\frac { \frac { 8 }{ 15 } }{ 7 } \\ \frac { \left[ AGH \right] }{ \left[ ABCD \right] } =\boxed { \frac { 8 }{ 105 } }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...