A Sangaku geometry problem

Geometry Level 3

In the diagram above, B C D \triangle BCD and E F G \triangle EFG are equilateral and B , C , D , F B, C, D, F and G G are concyclic. Let R 1 R_1 and R 2 R_2 be the circumradii of B C D \triangle BCD and E F G \triangle EFG respectively. Find R 2 R 1 . \dfrac {R_2}{R_1}.

Note: This is a variation of a Sangaku problem from the early 1800s.


The answer is 0.309107.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Oct 14, 2020

It's clear that A E = R 1 2 \overline{A E} = \frac{R_1}{2} because A C E = 3 0 o \angle ACE = 30^{o} .

The triangle Δ A H F \Delta AHF has sides A H = R 1 2 + R 2 \overline{AH} = \frac{R_1}{2} + R_2 , H F = R 2 \overline{HF} = R_2 and A F = R 1 \overline{AF} = R_1 . Furthermore angle A H F = 12 0 o \angle AHF = 120^{o} . Using cosine law:

R 1 2 = ( R 1 2 + R 2 ) 2 + R 2 2 2 ( R 1 2 + R 2 ) R 2 cos ( 12 0 o ) \large \displaystyle R_1^2 = \left (\frac{R_1}{2} + R_2 \right)^2 + R_2^2 - 2 \left (\frac{R_1}{2} + R_2 \right) R_2 \cos(120^{o})

R 1 2 = R 1 2 + 4 R 1 R 2 + 4 R 2 2 4 + R 2 2 + 2 R 2 R 1 + 4 R 2 2 4 \large \displaystyle R_1^2 = \frac{R_1^2 + 4R_1R_2 + 4R_2^2}{4} + R_2^2 + \frac{2R_2R_1 + 4R_2^2}{4}

12 R 2 2 + 6 R 1 R 2 3 R 1 2 = 0 \large \displaystyle 12R_2^2 + 6R_1R_2 - 3R_1^2 = 0

4 R 2 2 + 2 R 1 R 2 R 1 2 = 0 \large \displaystyle 4R_2^2 + 2R_1R_2 - R_1^2 = 0

R 2 = 2 R 1 + 20 R 1 2 8 \large \displaystyle R_2 = \frac{-2R_1 + \sqrt{20R_1^2}}{8}

R 2 = R 1 ( 1 + 5 4 ) \color{#20A900} \boxed{\large \displaystyle R_2 = R_1 \left( \frac{-1 + \sqrt{5}}{4} \right)}

Thus:

R 2 R 1 0.309017 \color{#3D99F6} \boxed{\large \displaystyle \frac{R_2}{R_1} \approx 0.309017 }

Thanks:), great solution. (+1)

N. Aadhaar Murty - 8 months ago
Chew-Seong Cheong
Oct 15, 2020

Let R 1 = 1 R_1 = 1 and R 2 = r R_2 = r . Then R 2 R 1 = r \dfrac {R_2}{R_1} = r . Let the centroid of B C D \triangle BCD be A A and the median of E F G \triangle EFG be E H EH . Then we note that A E AE and E H EH are colinear and is perpendicular to F G FG . By Pythagorean theorem , we have:

A H 2 + F H 2 = A F 2 ( A E + E H ) 2 + F H 2 = A F 2 ( 1 2 + 3 2 r ) 2 + ( 3 2 r ) 2 = 1 9 r 2 + 6 r + 1 + 3 r 2 = 4 12 r 2 + 6 r 3 = 0 4 r 2 + 2 r 1 = 0 \begin{aligned} AH^2 + FH^2 & = AF^2 \\ (AE+EH)^2 +FH^2 & = AF^2 \\ \left(\frac 12 + \frac 32 r \right)^2 + \left(\frac {\sqrt 3}2r\right)^2 & = 1 \\ 9r^2 + 6r + 1 + 3r^2 & = 4 \\ 12r^2 + 6r - 3 & = 0 \\ 4r^2 + 2r - 1 & = 0 \end{aligned}

r = 2 2 4 ( 1 ) ( 4 ) 2 8 = 5 1 4 0.309 \implies r = \dfrac {\sqrt{2^2-4(-1)(4)}-2}8 = \dfrac {\sqrt 5 -1}4 \approx \boxed{0.309}

@Chew-Seong Cheong I think you meant A H 2 + F H 2 = A F 2 ? AH^{2} + FH^{2} = \color{#D61F06} AF^{2}?

N. Aadhaar Murty - 8 months ago

Log in to reply

Yes, thanks I will amend it.

Chew-Seong Cheong - 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...