A Golden Equation

Algebra Level 3

If

ϕ n 3 + k ϕ n = ϕ n + 3 \phi^{n - 3} + k\phi^n = \phi^{n + 3}

for all integers n n (where ϕ \phi is the golden ratio ϕ = 1 + 5 2 \phi = \frac{1 + \sqrt{5}}{2} ), find k k .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 16, 2019

Given that

ϕ n 3 + k ϕ n = ϕ n + 3 Multiply both sides by ϕ 3 n 1 + k ϕ 3 = ϕ 6 Note that ϕ n = F n ϕ + F n 1 , where 1 + k ( F 3 ϕ + F 2 ) = F 6 ϕ + F 5 F n is the n th Fibonacci number. 1 + 2 k ϕ + k = 8 ϕ + 5 k = 4 \begin{aligned} \phi^{n-3} + k \phi^n & = \phi^{n+3} & \small \blue{\text{Multiply both sides by }\phi^{3-n}} \\ 1 + k \phi^3 & = \phi^6 & \small \blue{\text{Note that }\phi^n = F_n\phi + F_{n-1} \text{, where}} \\ 1 + k (F_3\phi + F_2) & = F_6 \phi + F_5 & \small \blue{F_n \text{ is the }n\text{th Fibonacci number.}} \\ 1 + 2k \phi + k & = 8 \phi + 5 \\ \implies k & = \boxed 4 \end{aligned}


Reference: Fibonacci number

David Vreken
Oct 19, 2019

ϕ n 3 + k ϕ n = ϕ n + 3 \phi^{n - 3} + k\phi^n = \phi^{n + 3}

ϕ 3 + k = ϕ 3 \phi^{-3} + k = \phi^{3}

1 + k ϕ 3 = ϕ 6 1 + k \phi^{3} = \phi^{6}

k = ϕ 6 1 ϕ 3 k = \frac{\phi^{6} - 1}{\phi^{3}}

k = 9 + 4 5 1 2 + 5 k = \frac{9 + 4\sqrt{5} - 1}{2 + \sqrt{5}}

k = 8 + 4 5 2 + 5 k = \frac{8 + 4\sqrt{5}}{2 + \sqrt{5}}

k = 4 ( 2 + 5 ) 2 + 5 k = \frac{4(2 + \sqrt{5})}{2 + \sqrt{5}}

k = 4 k = \boxed{4}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...