A Golden Problem!

Geometry Level 3

In A B C , B A D D A C , A B D C \triangle{ABC}, \angle{BAD} \cong \angle{DAC}, \overline{AB} \cong \overline{DC} and m A B C = 2 ( m A C B ) m\angle{ABC} = 2(m\angle{ACB}) .

If the area of A B C \triangle ABC is A A B C A_{\triangle ABC} , then A A B C ( B C ) 2 = a ( ϕ 1 ) b \dfrac{A_{\triangle{ABC}}}{(\overline{BC})^2} = \dfrac{\sqrt{\sqrt{a}(\phi - 1)}}{b} , where ϕ \phi denotes the golden ratio and a a and b b are coprime positive integers, find a + b a + b .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let A B = D C = 1 AB=DC=1 and A C = x AC=x . By angle bisector theorem ,

B D A B = D C A C B D 1 = 1 x B C = 1 + B D = 1 + 1 x \dfrac {BD}{AB} = \dfrac {DC}{AC} \implies \dfrac {BD}1 = \dfrac 1x \implies BC = 1 + BD = 1 + \dfrac 1x

By sine rule ,

sin B sin C = A C A B = x sin ( 2 C ) sin C = x 2 sin C cos C = x sin C cos C = x 2 \begin{aligned} \frac {\sin B}{\sin C} & = \frac {AC}{AB} = x \\ \frac {\sin (2C)}{\sin C} & = x \\ 2\sin C \cos C & = x \sin C \\ \implies \cos C & = \frac x2 \end{aligned}

By cosine rule ,

A C 2 + B C 2 2 A C B C cos C = A B 2 x 2 + ( 1 + 1 x ) 2 2 x ( 1 + 1 x ) x 2 = 1 x 2 + 1 + 2 x + 1 x 2 x 2 x = 1 2 x + 1 x 2 x = 0 x 3 = 2 x + 1 x = φ where φ = 1 + 5 2 denotes the golden ratio, \begin{aligned} AC^2 + BC^2 - 2 \cdot AC \cdot BC \cdot \cos C & = AB^2 \\ x^2 + \left(1+\frac 1x \right)^2 - 2 x \left(1+\frac 1x \right) \cdot \frac x2 & = 1 \\ x^2 + 1 + \frac 2x + \frac 1{x^2} - x^2 - x & = 1 \\ \frac 2x + \frac 1{x^2} - x & = 0 \\ x^3 & = 2x + 1 \\ \implies x & = \varphi & \small \blue{\text{where }\varphi = \frac {1+\sqrt 5}2 \text{ denotes the golden ratio,}} \end{aligned}

Then cos C = φ 2 C = 3 6 \cos C = \dfrac \varphi 2 \implies C = 36^\circ . And the area of A B C \triangle ABC is given by:

A = 1 2 A C B C sin C = φ 2 ( 1 + 1 φ ) 1 φ 2 4 A B C 2 = φ + 1 2 φ 1 φ 2 4 = φ 2 4 φ 2 4 φ 2 = 1 4 4 3 + 5 2 = 1 4 5 5 2 = 1 4 5 ( 5 1 2 ) = 1 4 5 ( 5 + 1 2 1 ) = 5 ( φ 1 ) 4 \begin{aligned} A_\triangle & = \frac 12 \cdot AC \cdot BC \cdot \sin C = \frac \varphi 2 \left(1 + \frac 1\varphi \right) \sqrt{1-\frac {\varphi^2}4} \\ \frac {A_\triangle}{BC^2} & = \frac {\varphi+1}{2\varphi} \sqrt{1-\frac {\varphi^2}4} = \frac {\varphi^2\sqrt{4-\varphi^2}}{4\varphi^2} = \frac 14 \sqrt{4-\frac {3+\sqrt 5}2} \\ & = \frac 14 \sqrt{\frac {5-\sqrt 5}2} = \frac 14 \sqrt{\sqrt 5 \left(\frac {\sqrt 5-1}2\right)} \\ & = \frac 14 \sqrt{\sqrt 5 \left(\frac {\sqrt 5+1}2 - 1\right)} = \frac {\sqrt{\sqrt 5(\varphi -1)}}4 \end{aligned}

Therefore a + b = 5 + 4 = 9 a+b = 5 + 4 = \boxed 9 .

Rocco Dalto
Nov 30, 2020

θ + λ + 18 0 m = 18 0 m = θ + λ \theta + \lambda + 180^{\circ} - m = 180^{\circ} \implies m = \theta + \lambda

Using law of sines of A D C \triangle{ADC} and A B D \triangle{ABD} \implies

D C sin ( θ ) = A D sin ( λ ) \dfrac{\overline{DC}}{\sin(\theta)} = \dfrac{\overline{AD}}{\sin(\lambda)}

and

A B sin ( θ + λ ) = A D sin ( 2 λ ) \dfrac{\overline{AB}}{\sin(\theta + \lambda)} = \dfrac{\overline{AD}}{\sin(2\lambda)}

A B sin ( 2 λ ) sin ( θ + λ ) = \implies \dfrac{\overline{AB}\sin(2\lambda)}{\sin(\theta + \lambda)} = D C sin ( λ ) sin ( θ ) \dfrac{\overline{DC}\sin(\lambda)}{\sin(\theta)}

sin ( 2 λ ) sin ( θ ) = sin ( λ ) sin ( θ + λ ) \implies \sin(2\lambda)\sin(\theta) = \sin(\lambda)\sin(\theta + \lambda) \implies

2 cos ( λ ) sin ( θ ) = sin ( θ ) cos ( λ ) + cos ( θ ) sin ( λ ) 2\cos(\lambda)\sin(\theta) = \sin(\theta)\cos(\lambda) + \cos(\theta)\sin(\lambda)

cos ( θ ) sin ( λ ) cos ( λ ) sin ( θ ) = 0 sin ( λ θ ) = 0 θ = λ \implies \cos(\theta)\sin(\lambda) - \cos(\lambda)\sin(\theta) = 0 \implies \sin(\lambda - \theta) = 0 \implies \theta = \lambda

18 0 = 3 λ + 2 θ = 5 λ λ = 3 6 = θ 2 θ = 2 λ = 7 2 \implies 180^{\circ} = 3\lambda + 2\theta = 5\lambda \implies \lambda = 36^{\circ} = \theta \implies 2\theta = 2\lambda = 72^{\circ}

h = A C sin ( 3 6 ) = B C sin ( 3 6 ) h = \overline{AC}\sin(36^{\circ}) = \overline{BC}\sin(36^{\circ}) \implies

A A B C = 1 2 ( B C ) 2 sin ( 3 6 ) A_{\triangle{ABC}} = \dfrac{1}{2}(\overline{BC})^2\sin(36^{\circ}) A A B C ( B C ) 2 = 1 2 10 2 5 4 = \implies \dfrac{A_{\triangle{ABC}}}{(\overline{BC})^2} = \dfrac{1}{2}\dfrac{\sqrt{10 - 2\sqrt{5}}}{4} =

= 2 ( 5 5 ) 8 = 4 5 ( 5 1 2 ) 8 = \dfrac{\sqrt{2(5 - \sqrt{5})}}{8} = \dfrac{\sqrt{4\sqrt{5}(\dfrac{\sqrt{5} - 1}{2})}}{8} = 5 ( ϕ 1 ) 4 = = \dfrac{\sqrt{\sqrt{5}(\phi - 1)}}{4} =

a ( ϕ 1 ) b a + b = 9 \dfrac{\sqrt{\sqrt{a}(\phi - 1)}}{b} \implies a + b = \boxed{9} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...