A Golden Question

Algebra Level 4

If ( w 1 ) ( w + 1 ) = w (w-1)(w+1)=w , find the value of w 10 + w 10 w^{10}+w^{-10} .


The answer is 123.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Oct 19, 2015

( w 1 ) ( w + 1 ) = w w 2 1 = w w 2 1 w = 0 w w 1 1 = 0 w w 1 = 1 w 2 + w 2 = ( w w 1 ) 2 + 2 = 1 + 2 = 3 ( w w 1 ) 3 = w 3 3 w + 3 w 1 w 3 1 = w 3 3 ( 1 ) w 3 w 3 w 3 = 4 ( w 3 w 3 ) 2 = w 6 2 + w 6 w 6 + w 6 = 4 2 + 2 = 18 ( w 2 + w 2 ) 5 = w 10 + 5 w 6 + 10 w 2 + 10 w 2 + 5 w 6 + w 10 w 10 + w 10 = ( w 2 + w 2 ) 5 5 ( w 6 + w 6 ) 10 ( w 2 + w 2 ) = 3 5 5 ( 18 ) 10 ( 3 ) = 123 \begin{aligned} (w-1)(w+1) & = w \\ \Rightarrow w^2 - 1 & = w \\ w^2 -1 -w & = 0 \\ \Rightarrow w - w^{-1} - 1 & = 0 \\ w - w^{-1} & = 1 \\ & \\ \color{#3D99F6}{w^2 + w^{-2}} & = \left(w - w^{-1}\right)^2 + 2 = 1 + 2 = \color{#3D99F6}{3} \\ & \\ \left(w - w^{-1}\right)^3 & = w^3 - 3w + 3w^{-1}-w^{-3} \\ \Rightarrow 1 & = w^3 - 3(1) -w^{-3} \\ \Rightarrow w^3 -w^{-3} & = 4 \\ \left(w^3 -w^{-3}\right)^2 & = w^6 -2 + w^{-6} \\ \Rightarrow \color{#D61F06}{w^6 + w^{-6}} & = 4^2 + 2 = \color{#D61F06}{18} \\ & \\ \left(w^2 + w^{-2}\right)^5 & = w^{10} + 5w^6 + 10w^2 + 10w^{-2} + 5w^{-6} + w^{-10} \\ \Rightarrow w^{10} + w^{-10} & = \left(\color{#3D99F6}{w^2 + w^{-2}} \right)^5 - 5 \left(\color{#D61F06}{w^6 + w^{-6}} \right) - 10 \left( \color{#3D99F6}{w^2 + w^{-2}} \right) \\ & = \color{#3D99F6}{3}^5 - 5(\color{#D61F06}{18}) - 10(\color{#3D99F6}{3}) = \boxed{123} \end{aligned}

we can also use newton's sum formula to solve this problem. And eventually it comes out to be of the form of Fibonacci series with starting terms 1&3 .

Ƨarthi Nayak - 5 years, 7 months ago

Log in to reply

it is actually called the Lucas series. you can google it for more information.

Aareyan Manzoor - 5 years, 6 months ago
Aareyan Manzoor
Dec 13, 2015

( w 1 ) ( w + 1 ) = w (w-1)(w+1)=w w 2 = w + 1 w^2=w+1 w = φ , φ 1 w=\varphi,-\varphi^{-1} we see that puting both in the given express will give the same answer. here, φ \varphi is the golden ratio. we plug in either of these values and the expression becomes φ 10 + ( φ ) 10 \varphi^{10}+(-\varphi)^{-10} we know L n = φ n + ( φ ) n L_n=\varphi^{n}+(-\varphi)^{-n} where L n = { 2 , n = 0 1 , n = 1 L n 1 + L n 2 , n > 1 L_n=\begin{cases} 2,\quad n=0\\1,\quad n=1\\ L_{n-1}+L_{n-2} ,\quad n>1\end{cases} . we can easily find the 10th lucas numer. 2 , 1 , ( 1 + 2 = ) 3 , ( 3 + 1 = ) 4 , ( 4 + 3 = ) 7 , ( 7 + 4 = ) 11 , ( 11 + 7 = ) 18 , ( 18 + 11 = ) 29 , ( 29 + 18 = ) 47 , ( 47 + 29 = ) 76 , ( 76 + 47 = ) 123 2,1,(1+2=)3,(3+1=)4,(4+3=)7,(7+4=)11,(11+7=)18,(18+11=)29,(29+18=)47,(47+29=)76,(76+47=)\boxed{123}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...