If ( w − 1 ) ( w + 1 ) = w , find the value of w 1 0 + w − 1 0 .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
we can also use newton's sum formula to solve this problem. And eventually it comes out to be of the form of Fibonacci series with starting terms 1&3 .
Log in to reply
it is actually called the Lucas series. you can google it for more information.
( w − 1 ) ( w + 1 ) = w w 2 = w + 1 w = φ , − φ − 1 we see that puting both in the given express will give the same answer. here, φ is the golden ratio. we plug in either of these values and the expression becomes φ 1 0 + ( − φ ) − 1 0 we know L n = φ n + ( − φ ) − n where L n = ⎩ ⎪ ⎨ ⎪ ⎧ 2 , n = 0 1 , n = 1 L n − 1 + L n − 2 , n > 1 . we can easily find the 10th lucas numer. 2 , 1 , ( 1 + 2 = ) 3 , ( 3 + 1 = ) 4 , ( 4 + 3 = ) 7 , ( 7 + 4 = ) 1 1 , ( 1 1 + 7 = ) 1 8 , ( 1 8 + 1 1 = ) 2 9 , ( 2 9 + 1 8 = ) 4 7 , ( 4 7 + 2 9 = ) 7 6 , ( 7 6 + 4 7 = ) 1 2 3
Problem Loading...
Note Loading...
Set Loading...
( w − 1 ) ( w + 1 ) ⇒ w 2 − 1 w 2 − 1 − w ⇒ w − w − 1 − 1 w − w − 1 w 2 + w − 2 ( w − w − 1 ) 3 ⇒ 1 ⇒ w 3 − w − 3 ( w 3 − w − 3 ) 2 ⇒ w 6 + w − 6 ( w 2 + w − 2 ) 5 ⇒ w 1 0 + w − 1 0 = w = w = 0 = 0 = 1 = ( w − w − 1 ) 2 + 2 = 1 + 2 = 3 = w 3 − 3 w + 3 w − 1 − w − 3 = w 3 − 3 ( 1 ) − w − 3 = 4 = w 6 − 2 + w − 6 = 4 2 + 2 = 1 8 = w 1 0 + 5 w 6 + 1 0 w 2 + 1 0 w − 2 + 5 w − 6 + w − 1 0 = ( w 2 + w − 2 ) 5 − 5 ( w 6 + w − 6 ) − 1 0 ( w 2 + w − 2 ) = 3 5 − 5 ( 1 8 ) − 1 0 ( 3 ) = 1 2 3