A graph won't help much with this limit!

Calculus Level 2

lim x log 27 ( x 2 ) + 5 log 9 ( x ) \large \lim_{x \rightarrow \infty} \dfrac{\log_{27} (x^2)+5}{\log_9(x)}

The limit above can be expressed as A B \dfrac AB , where A A and B B are positive coprime integers. Enter A + B A+B .


The answer is 7.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Apr 10, 2019

L = lim x log 27 x 2 + 5 log 9 x Change all log to base 3 = lim x log 3 x 2 log 3 27 + 5 log 3 x log 3 9 = lim x 2 log 3 x 3 + 5 log 3 x 2 = lim x 4 log 3 x + 30 3 log 3 x Divide up and down by log 3 x = lim x 4 + 30 log 3 x 3 = 4 3 \begin{aligned} L & = \lim_{x \to \infty} \frac {\log_{27} x^2 + 5}{\log_9 x} & \small \color{#3D99F6} \text{Change all log to base 3} \\ & = \lim_{x \to \infty} \frac {\frac {\log_3 x^2}{\log_3 27} + 5}{\frac {\log_3 x}{\log_3 9}} \\ & = \lim_{x \to \infty} \frac {\frac {2 \log_3 x}3 + 5}{\frac {\log_3 x}2} \\ & = \lim_{x \to \infty} \frac {4\log_3 x + 30}{3\log_3 x} & \small \color{#3D99F6} \text{Divide up and down by }\log_3 x \\ & = \lim_{x \to \infty} \frac {4 + \frac {30}{\log_3 x}}3 \\ & = \frac 43 \end{aligned}

Therefore, A + B = 4 + 3 = 7 A+B = 4+3 = \boxed 7 .

M M
Apr 9, 2019

First, using the change of base formula, we may write:

log 27 ( x 2 ) = log 9 ( x 2 ) / log 9 ( 27 ) = log 9 ( x 2 ) / ( 3 / 2 ) = 2 / 3 log 9 ( x 2 ) \log_{27}(x^2) = \log_9(x^2) / \log_9 (27) \\ = \log_9(x^2) / (3/2) \\ = 2/3 \log_9(x^2)

We may thus rewrite our expression as

2 / 3 log 9 ( x 2 ) + 5 log 9 ( x ) \frac{2/3 \log_9(x^2) + 5}{\log_9(x)}

Next, using log properties, we may rewrite log 9 ( x 2 ) = 2 log 9 ( x ) \log_9(x^2) = 2 \log_9(x) , and we get our expression is equivalent to:

4 / 3 log 9 ( x ) + 5 log 9 ( x ) \frac{4/3 \log_9(x) + 5}{\log_9(x)}

Multiplying through by 1 / log 9 ( x ) 1/\log_9(x) in the numerator and the denominator we have:

4 / 3 + 5 / log 9 ( x ) 1 \frac{4/3 + 5/\log_9(x)}{1}

As x x \rightarrow \infty , we know log 9 ( x ) \log_9(x) \rightarrow \infty , thus 1 / log 9 ( x ) 0 1/\log_9(x) \rightarrow 0 . Therefore the limit we want is 4 / 3 4/3 and our answer is 4+3=7.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...