x → ∞ lim lo g 9 ( x ) lo g 2 7 ( x 2 ) + 5
The limit above can be expressed as B A , where A and B are positive coprime integers. Enter A + B .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
First, using the change of base formula, we may write:
lo g 2 7 ( x 2 ) = lo g 9 ( x 2 ) / lo g 9 ( 2 7 ) = lo g 9 ( x 2 ) / ( 3 / 2 ) = 2 / 3 lo g 9 ( x 2 )
We may thus rewrite our expression as
lo g 9 ( x ) 2 / 3 lo g 9 ( x 2 ) + 5
Next, using log properties, we may rewrite lo g 9 ( x 2 ) = 2 lo g 9 ( x ) , and we get our expression is equivalent to:
lo g 9 ( x ) 4 / 3 lo g 9 ( x ) + 5
Multiplying through by 1 / lo g 9 ( x ) in the numerator and the denominator we have:
1 4 / 3 + 5 / lo g 9 ( x )
As x → ∞ , we know lo g 9 ( x ) → ∞ , thus 1 / lo g 9 ( x ) → 0 . Therefore the limit we want is 4 / 3 and our answer is 4+3=7.
Problem Loading...
Note Loading...
Set Loading...
L = x → ∞ lim lo g 9 x lo g 2 7 x 2 + 5 = x → ∞ lim lo g 3 9 lo g 3 x lo g 3 2 7 lo g 3 x 2 + 5 = x → ∞ lim 2 lo g 3 x 3 2 lo g 3 x + 5 = x → ∞ lim 3 lo g 3 x 4 lo g 3 x + 3 0 = x → ∞ lim 3 4 + lo g 3 x 3 0 = 3 4 Change all log to base 3 Divide up and down by lo g 3 x
Therefore, A + B = 4 + 3 = 7 .