A great Sum

Algebra Level 2

Evalutate:

cos 1 5 + cos 3 5 + cos 5 5 + + cos 35 5 \cos 15^\circ +\cos 35^\circ + \cos 55^\circ + \cdots + \cos 355^\circ


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

The given sum can be expressed as follows:

S = k = 0 17 cos ( 20 k + 15 ) = k = 0 8 cos ( 20 k + 15 ) cos 1 5 cos 17 5 + k = 9 17 cos ( 20 k + 15 ) cos 19 5 cos 35 5 = k = 0 8 cos ( 20 k + 15 ) + k = 0 8 cos ( 20 k + 195 ) Note that cos ( 18 0 θ ) = cos θ = k = 0 8 cos ( 20 k + 15 ) k = 0 8 cos ( 20 k 15 ) also cos ( θ ) = cos θ = k = 0 8 cos ( 20 k + 15 ) k = 0 8 cos ( 20 k + 15 ) = 0 \begin{aligned} S & = \sum_{k=0}^{17} \cos (20k+15)^\circ \\ & = \underbrace{\sum_{k=0}^8 \cos (20k+15)^\circ}_{\cos 15^\circ \cdots \cos 175^\circ} + \underbrace{\sum_{k=9}^{17} \cos (20k+15)^\circ}_{\cos 195^\circ \cdots \cos 355^\circ} \\ & = \sum_{k=0}^8 \cos (20k+15)^\circ \color{#3D99F6} + \sum_{k=0}^8 \cos (20k+195)^\circ & \small \color{#3D99F6} \text{Note that }\cos (180^\circ - \theta) = - \cos \theta \\ & = \sum_{k=0}^8 \cos (20k+15)^\circ \color{#3D99F6} - \sum_{k=0}^8 \cos (-20k-15)^\circ & \small \color{#3D99F6} \text{also }\cos (- \theta) = \cos \theta \\ & = \sum_{k=0}^8 \cos (20k+15)^\circ \color{#3D99F6}- \sum_{k=0}^8 \cos (20k+15)^\circ \\ & = \boxed 0 \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...