∫
0
π
3
sin
x
x
cos
3
x
d
x
=
c
π
a
b
(
d
π
a
−
e
ln
a
)
If the above integral is true for positive integers
a
,
b
,
c
,
d
,
e
, where
a
,
b
are prime
Evaluate
a
+
b
+
c
+
d
+
e
.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Problem Loading...
Note Loading...
Set Loading...
Defining the function F ( a , ν ) = ∫ 0 π sin ν − 1 x sin a x d x = 2 ν − 1 ν B ( 2 ν + a + 1 , 2 ν − a + 1 ) π sin 2 1 π a we see that the desired integral is I = ∫ 0 π 3 sin x x cos 3 1 x d x = ∂ a ∂ F ( 3 1 , 3 2 ) . If we write G ( a ) = F ( a , 3 2 ) = = 2 − 3 1 3 2 B ( 6 5 + 2 1 a , 6 5 − 2 1 a ) π sin 2 1 π a = 3 2 Γ ( 6 5 + 2 1 a ) Γ ( 6 5 − 2 1 a ) π 2 3 1 sin 2 1 π a Γ ( 3 5 ) Γ ( 6 5 + 2 1 a ) Γ ( 6 5 − 2 1 a ) π 2 3 1 sin 2 1 π a Γ ( 3 2 ) then G ′ ( a ) = Γ ( 6 5 + 2 1 a ) Γ ( 6 5 − 2 1 a ) π 2 3 1 Γ ( 3 2 ) [ 2 1 π cos 2 1 π a − 2 1 sin 2 1 π a ψ ( 6 5 + 2 1 a ) + 2 1 sin 2 1 π a ψ ( 6 5 − 2 1 a ) ] and so the integral is G ′ ( 3 1 ) = = = = 4 Γ ( 1 ) Γ ( 3 2 ) π 3 2 Γ ( 3 2 ) [ π 3 − ψ ( 1 ) + ψ ( 3 2 ) ] 4 π 3 2 [ π 3 + γ − γ + 2 3 1 π − 2 3 ln 3 ] 4 π 3 2 [ 2 3 7 π − 2 3 ln 3 ] 2 4 π 3 2 [ 7 π 3 − 9 ln 3 ] This gives a = 3 , b = 2 , c = 2 4 , d = 7 and e = 9 , making the answer 4 5 .