A Headache for sure!

Calculus Level 5

0 π x cos x 3 sin x 3 d x = π b a c ( d π a e ln a ) \int_0^\pi\frac{x\,\cos\frac x3}{\sqrt[3]{\sin x}}dx =\frac{\pi\sqrt[a]b}{c}\big(d\pi\sqrt a -e\ln a\big) If the above integral is true for positive integers a , b , c , d , e a,b,c,d,e , where a , b a,b are prime
Evaluate a + b + c + d + e a+b+c+d+e .


The answer is 45.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 15, 2016

Defining the function F ( a , ν ) = 0 π sin ν 1 x sin a x d x = π sin 1 2 π a 2 ν 1 ν B ( ν + a + 1 2 , ν a + 1 2 ) F(a,\nu) \; =\; \int_0^\pi \sin^{\nu-1}x \sin ax\,dx \; =\; \frac{\pi \sin\frac12\pi a}{2^{\nu-1} \nu B\big(\tfrac{\nu+a+1}{2},\frac{\nu-a+1}{2}\big)} we see that the desired integral is I = 0 π x cos 1 3 x sin x 3 d x = F a ( 1 3 , 2 3 ) . I \; = \; \int_0^\pi \frac{x \cos\frac13x}{\sqrt[3]{\sin x}}\,dx \; = \; \frac{\partial F}{\partial a}(\tfrac13,\tfrac23)\;. If we write G ( a ) = F ( a , 2 3 ) = π sin 1 2 π a 2 1 3 2 3 B ( 5 6 + 1 2 a , 5 6 1 2 a ) = π 2 1 3 sin 1 2 π a Γ ( 5 3 ) 2 3 Γ ( 5 6 + 1 2 a ) Γ ( 5 6 1 2 a ) = π 2 1 3 sin 1 2 π a Γ ( 2 3 ) Γ ( 5 6 + 1 2 a ) Γ ( 5 6 1 2 a ) \begin{array}{rcl} G(a) \; = \; F(a,\tfrac23) & = & \displaystyle \frac{\pi \sin \frac12\pi a}{2^{-\frac13} \frac23 B(\frac56 + \frac12a,\frac56 - \frac12a)} \; = \; \frac{\pi 2^{\frac13}\sin \frac12\pi a \Gamma(\frac53)}{\frac23 \Gamma(\frac56+\frac12a)\Gamma(\frac56-\frac12a)} \\ & = & \displaystyle \frac{\pi 2^{\frac13}\sin\frac12\pi a \Gamma(\frac23)}{\Gamma(\frac56 + \frac12a)\Gamma(\frac56 - \frac12a)} \end{array} then G ( a ) = π 2 1 3 Γ ( 2 3 ) Γ ( 5 6 + 1 2 a ) Γ ( 5 6 1 2 a ) [ 1 2 π cos 1 2 π a 1 2 sin 1 2 π a ψ ( 5 6 + 1 2 a ) + 1 2 sin 1 2 π a ψ ( 5 6 1 2 a ) ] G'(a) \; =\; \frac{\pi 2^{\frac13}\Gamma(\frac23)}{\Gamma(\frac56 + \frac12a)\Gamma(\frac56 - \frac12a)} \left[ \begin{array}{c} \tfrac12\pi \cos\tfrac12\pi a - \tfrac12\sin \tfrac12\pi a \,\psi(\tfrac56 + \tfrac12a) \\ + \tfrac12\sin\tfrac12\pi a \,\psi(\tfrac56 - \tfrac12a) \end{array}\right] and so the integral is G ( 1 3 ) = π 2 3 Γ ( 2 3 ) 4 Γ ( 1 ) Γ ( 2 3 ) [ π 3 ψ ( 1 ) + ψ ( 2 3 ) ] = π 2 3 4 [ π 3 + γ γ + 1 2 3 π 3 2 ln 3 ] = π 2 3 4 [ 7 2 3 π 3 2 ln 3 ] = π 2 3 24 [ 7 π 3 9 ln 3 ] \begin{array}{rcl} G'(\tfrac13) & = & \displaystyle \frac{\pi \sqrt[3]{2} \Gamma(\tfrac23)}{4\Gamma(1)\Gamma(\tfrac23)}\big[ \pi \sqrt{3} - \psi(1) + \psi(\tfrac23)\big] \\ & = & \displaystyle \frac{\pi \sqrt[3]{2}}{4}\big[\pi \sqrt{3} + \gamma - \gamma + \tfrac{1}{2\sqrt{3}}\pi - \tfrac32 \ln3\big] \\ & = & \displaystyle \frac{\pi \sqrt[3]{2}}{4}\big[\tfrac{7}{2\sqrt{3}}\pi - \tfrac32\ln3\big] \\ & = & \displaystyle \frac{\pi \sqrt[3]{2}}{24}\big[7\pi\sqrt{3} - 9\ln3\big] \end{array} This gives a = 3 a=3 , b = 2 b=2 , c = 24 c=24 , d = 7 d=7 and e = 9 e=9 , making the answer 45 \boxed{45} .

Bravo!(:)) @Mark Hennings

Kunal Gupta - 5 years, 3 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...