A Helix

Calculus Level pending

Let C C be the helix parametrized by the equations x = 4 sin t x=4\sin t , y = 4 cos t y=4\cos t and z = 3 t z=3t in the domain 0 t π 2 0 \leq t \leq \frac{\pi}{2} . Evaluate C x y 3 d S \int_C xy^3 dS , where d S dS is the differential of the arc length of the curve.

80 320 160 640

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Nov 8, 2020

The arc length S S is given by S = ( d x / d t ) 2 + ( d y / d t ) 2 + ( d z / d t ) 2 d t S = \int \sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2} dt , or d S d t = ( d x / d t ) 2 + ( d y / d t ) 2 + ( d z / d t ) 2 d S = ( d x / d t ) 2 + ( d y / d t ) 2 + ( d z / d t ) 2 d t . \frac{dS}{dt} = \sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2} \Rightarrow dS = \sqrt{(dx/dt)^2 + (dy/dt)^2 + (dz/dt)^2} dt. Turning now to our path integral, we can now write:

C x y 3 d S = 0 π / 2 ( 4 sin t ) ( 4 cos t ) 3 ( 4 cos t ) 2 + ( 4 sin t ) 2 + 3 2 d t \int_{C} xy^3 dS = \int_{0}^{\pi/2} (4\sin t)(4 \cos t)^3 \cdot \sqrt{(4\cos t)^2 + (-4\sin t)^2 + 3^2} dt ;

or 0 π / 2 256 sin t cos 3 t 16 + 9 d t \int_{0}^{\pi/2} 256\sin t \cos^{3} t \cdot \sqrt{16 + 9} dt ;

or 1280 0 π / 2 sin t cos 3 t d t 1280 \int_{0}^{\pi/2} \sin t \cos^{3} t dt ;

or 320 cos 4 t 0 π / 2 = 320 . -320\cos^{4}t|_{0}^{\pi/2} = \boxed{320}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...