A Hidden Trigonometric Identity

Level 2

Evaluate n = 1 cos π 4 2 n \displaystyle\prod_{n=1}^{\infty}\cos{\frac{\pi}{4\cdot 2^n}} .

2 π \frac{2}{\pi} 2 2 \frac{\sqrt{2}}{2} 2 2 π \frac{2\sqrt{2}}{\pi} 1 π \frac{1}{\pi}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tony Lu
Feb 11, 2015

From sin 2 x = 2 sin x cos x \displaystyle\sin{2x}=2\sin{x}\cos{x} , sin π 4 = 4 sin π 16 cos π 16 cos π 8 \sin{\frac{\pi}{4}}=4\sin{\frac{\pi}{16}}\cos{\frac{\pi}{16}}\cos{\frac{\pi}{8}} = 8 sin π 32 cos π 32 cos π 16 cos π 8 =8\sin{\frac{\pi}{32}}\cos{\frac{\pi}{32}}\cos{\frac{\pi}{16}}\cos{\frac{\pi}{8}} = 16 sin π 64 cos π 64 cos π 32 cos π 16 cos π 8 . =16\sin{\frac{\pi}{64}}\cos{\frac{\pi}{64}}\cos{\frac{\pi}{32}}\cos{\frac{\pi}{16}}\cos{\frac{\pi}{8}}. Continually expanding the sine term results in the infinite product of cosines. Isolating the product, lim n sin π 4 2 n sin π 4 2 n = n = 1 cos π 4 2 n . \lim_{n\rightarrow\infty}\frac{\sin{\frac{\pi}{4}}}{2^n\sin{\frac{\pi}{4\cdot2^{n}}}}=\prod_{n=1}^{\infty}\cos{\frac{\pi}{4\cdot2^n}}. Applying L'Hopital's rule to the left side gives the desired solution.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...