A Huge Summation it is. #1

n = 1 9 ( 11 × n ) 11 × n \color{#3D99F6}{\displaystyle \sum_{n=1}^9 \left( {11 \times n} \right)^{11 \times n}}

Find the unit digit of the above summation.


Join the Brilliant Classes and enjoy the excellence. Also checkout Foundation Assignment #2 for JEE.
0 3 7 5 6 2 1 9

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mas Mus
May 30, 2015

Let's write all items of the summation:

11 11 = ( 10 + 1 ) 11 = 10 × C 1 + 1 11 22 22 = ( 20 + 2 ) 22 = 10 × C 2 + 2 22 33 33 = ( 30 + 3 ) 33 = 10 × C 3 + 3 33 ( 90 + 9 ) 99 = 10 × C 9 + 9 99 {11}^{11}=(10+1)^{11}=10\times{C_1}+{1}^{11}\\{22}^{22}=(20+2)^{22}=10\times{C_2}+{2}^{22}\\{33}^{33}=(30+3)^{33}=10\times{C_3}+{3}^{33}\\\vdots\\(90+9)^{99}=10\times{C_9}+{9}^{99}

It's clear that 10 × C 1 , 10 × C 2 , 10 × C 3 , , 10 × C 9 10\times{C_1}, 10\times{C_2}, 10\times{C_3}, \ldots, 10\times{C_9} are divisible by 10 10 , so we just need to find the reminder of 1 11 , 2 22 , 3 33 , , 9 99 ( m o d 10 ) {1}^{11}, {2}^{22}, {3}^{33}, \ldots, {9}^{99}\pmod{10} .

By using Euler's theorem, CRT, and the properties of modular arithmetic we will find that

2 22 4 ( m o d 10 ) 3 33 3 ( m o d 10 ) 4 44 6 ( m o d 10 ) 5 55 5 ( m o d 10 ) 6 66 6 ( m o d 10 ) 7 77 7 ( m o d 10 ) 8 88 6 ( m o d 10 ) 9 99 9 ( m o d 10 ) {2}^{22}\equiv4\pmod{10}~~~~~{3}^{33}\equiv3\pmod{10}~~~~~{4}^{44}\equiv6\pmod{10}\\{5}^{55}\equiv5\pmod{10}~~~~~{6}^{66}\equiv6\pmod{10}~~~~~{7}^{77}\equiv7\pmod{10}\\{8}^{88}\equiv6\pmod{10}~~~~~{9}^{99}\equiv9\pmod{10}

Now, we have

1 + 4 + 3 + 6 + 5 + 6 + 7 + 6 + 9 47 7 ( m o d 10 ) 1+4+3+6+5+6+7+6+9\equiv47\equiv\boxed{7}\pmod{10}

Did the same

Rama Devi - 6 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...