An Infinite Partition for 2016

The set of non-negative integers are partitioned into arithmetic sequence with first terms a 1 , a 2 , , a k a_1 , a_2, \ldots, a_k , with common differences, d 1 , d 2 , , d k d_1, d_2,\ldots, d_k , respectively. If k = 2016 k = 2016 , find a 1 d 1 + a 2 d 2 + + a k d k . \frac{a_1}{d_1} + \frac{a_2}{d_2} +\cdots + \frac{a_k}{d_k}.


The answer is 1007.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alan Yan
Jan 3, 2016

Generalization: \textbf{Generalization:} a 1 d 1 + a 2 d 2 + . . . + a k d k = k 1 2 \frac{a_1}{d_1} + \frac{a_2}{d_2} + ... + \frac{a_k}{d_k} = \frac{k-1}{2} (MOSP)


Note that the following is true n = 0 X a 1 + n d 1 + . . . + n = 0 X a k + n d k = n = 0 X n \sum_{n = 0}^{\infty}{X^{a_1 + nd_1}} + ... + \sum_{n = 0}^{\infty}{X^{a_k + nd_k}} = \sum_{n = 0}^{\infty}{X^n} which gives us for X < 1 |X| < 1 , i = 1 k X a i 1 X d i = 1 1 x i = 1 k X a i 1 + X + . . . + X d i 1 = 1 \begin{aligned} \sum_{i = 1}^{k}\frac{X^{a_i}}{1 - X^{d_i}} & = \frac{1}{1-x} \\ \sum_{i = 1}^k\frac{X^{a_i}}{1 + X + ... + X^{d_i - 1}} & = 1 \end{aligned} Taking the limit when X 1 X \rightarrow 1^- gives us 1 d i = 1. \boxed{\sum \frac{1}{d_i} = 1.}

Consider the second equation,

i = 1 k X a i 1 + X + . . . + X d i 1 = 1 \sum_{i = 1}^k\frac{X^{a_i}}{1 + X + ... + X^{d_i - 1}} = 1 taking d d x \frac{d}{dx} of both sides gives us i = 1 k a i X a i 1 ( 1 + X + . . . + X d i 1 ) X a i ( 1 + 2 X + . . . + ( d i 1 ) X d i 2 ) ( 1 + . . . + X d i 1 ) 2 = 0 \sum_{i = 1}^k\frac{a_iX^{a_i - 1}(1 + X + ... + X^{d_i - 1}) - X^{a_i}(1 + 2X + ... + (d_i - 1)X^{d_i - 2})}{(1 + ... + X^{d_i - 1})^2} = 0 and taking the limit of X 1 X \rightarrow 1^- gives us i = 1 k a i d i ( d i 1 ) ( d i ) 2 d i 2 = 0 i = 1 k a i d i 1 2 d i = 0 a i d i = k 1 2 \begin{aligned} \sum_{i = 1}^k \frac{a_id_i - \frac{(d_i - 1)(d_i)}{2}}{d_i^2} & = 0 \\ \sum_{i = 1}^k \frac{a_i - \frac{d_i - 1}{2}}{d_i} & = 0 \\ \sum{\frac{a_i}{d_i}} & = \frac{k-1}{2} \end{aligned} and we are done.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...