Sum 2.

Geometry Level 4

Find the sum of series: k = 1 359 k cos k = ? \Large \sum_{k=1}^{359} k\cos k^{\circ} = \ ?

For more problems on mathematics, click here.


The answer is -180.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Aug 12, 2016

S = k = 1 359 k cos k Using k = a b f ( k ) = k = a b f ( a + b k ) = 1 2 k = 1 359 ( k cos k + ( 360 k ) cos ( 360 k ) ) cos ( 360 k ) = cos ( k ) = cos k = 1 2 k = 1 359 ( k cos k + ( 360 k ) cos k ) = 1 2 k = 1 359 360 cos k = 180 ( k = 1 179 cos k + cos 18 0 + k = 181 359 cos k ) k = a 180 a cos k = 0 , see Note. = 180 ( 0 1 + 0 ) = 180 \begin{aligned} S & = \sum_{k=1}^{359} k \cos k^\circ & \small \color{#3D99F6}{\text{Using }\sum_{k=a}^b f(k) = \sum_{k=a}^b f(a+b-k)} \\ & = \color{#3D99F6}{\frac 12} \sum_{k=1}^{359} \left(k \cos k^\circ + \color{#3D99F6}{(360-k)} \cos \color{#3D99F6}{(360-k)} ^\circ \right) & \small \color{#3D99F6}{\because \cos (360-k)^\circ = \cos (-k^\circ) = \cos k^\circ} \\ & = \frac 12 \sum_{k=1}^{359} \left(k \cos k^\circ + (360-k) \color{#3D99F6}{\cos k^\circ} \right) \\ & = \frac 12 \sum_{k=1}^{359} 360 \cos k^\circ \\ & = 180 \left(\color{#3D99F6}{\sum_{k=1}^{179} \cos k^\circ} + \cos 180^\circ + \color{#3D99F6}{\sum_{k=181}^{359} \cos k^\circ} \right) & \small \color{#3D99F6}{\because \sum_{k=a}^{180-a} \cos k^\circ = 0 \text{, see Note.}} \\ & = 180 \left(\color{#3D99F6}{0} -1 + \color{#3D99F6}{0} \right) \\ & = \boxed{-180} \end{aligned}


Note: \color{#3D99F6}{\text{Note:}}

We know that cos k = cos ( 180 k ) \cos k^\circ = - \cos (180-k)^\circ and cos 9 0 = 0 \cos 90^\circ = 0 , k = a 180 a cos k = 0 \implies \displaystyle \sum_{k=a}^{180-a} \cos k^\circ = 0 , k = 1 179 cos k = 0 \implies \displaystyle \sum_{k=1}^{179} \cos k^\circ = 0 , similarly k = 181 359 cos k = 0 \displaystyle \sum_{k=181}^{359} \cos k^\circ = 0 .

@Chew-Seong Cheong Thanks sir :)

Sahil Silare - 4 years, 10 months ago
Abhishek Sinha
Aug 12, 2016

We have, k = 1 359 k cos ( k ) = k = 1 359 ( 360 k ) cos ( k ) = ( a ) 360 2 k = 1 359 cos ( k ) = ( b ) 180 \sum_{k=1}^{359} k \cos(k^\circ) = \sum_{k=1}^{359}(360-k)\cos(k^\circ)\stackrel{(a)}{=} \frac{360}{2} \sum_{k=1}^{359} \cos(k^\circ)\stackrel{(b)}{=}-180 where (a) follows by taking average of the previous two equal terms and (b) follows from the fact that k = 1 360 cos ( k ) = 0 \sum_{k=1}^{360} \cos(k^\circ)=0 .

Thanks for the solution.

Sahil Silare - 4 years, 8 months ago
T Sidharth
Aug 23, 2016

We use the fact cos ( 360 x ) = cos x \cos{(360 -x)}= \cos x

Let S = k = 1 359 k cos k = ? S =\Large \sum_{k=1}^{359} k\cos k^{\circ} = \ ?

S = 1 cos 1 + 2 cos 2 + 3 cos 3........ + 359 cos 359 + 180 cos 180 S = 1\cos1 +2\cos2 +3\cos3 ........+359\cos359 +180\cos180

S = 360 ( cos 1 + cos 2 + cos 3...... + cos 179 ) + 180 cos 180 S = 360(\cos1 +\cos2 +\cos3 ......+\cos179) + 180\cos180

We can prove

cos 1 + cos 2 + cos 3...... + cos 179 = 0 \cos1 +\cos2 +\cos3 ......+\cos179 = 0 Using cos 180 θ = cos θ \cos{180 -\theta} = -\cos{\theta}

So S = 180 cos 180 = 180 S = 180\cos180 = -180

Thanks for the solution.

Sahil Silare - 4 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...