A limit

Calculus Level 4

Consider the following limits

L = lim x 0 ( 1 + { x } ) x L + = lim x 0 + ( 1 + { x } ) x \large L_- = \lim_{x \to 0^-} (1+\{x\})^{\lfloor x \rfloor} \qquad \qquad L_+ = \lim_{x \to 0^+} (1+\{x\})^{\lfloor x \rfloor}

What are L L_- and L + L_+ ?

Notations:

L = 0.5 ; L + = 1 L_-=0.5; \ L_+=1 L . = 1 ; L + = 0.5 L_-.=-1 ; \ L_+=-0.5 L = 1 ; L + = 1 L_-=-1 ; \ L_+=-1 L = 0.5 ; L + = 1 L_-=-0.5 ; \ L_+=1 L = 0.5 ; L + = 1 L_-=0.5 ; \ L_+=-1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L = lim x 0 ( 1 + { x } ) x = lim x 0 ( 1 + x ( 1 ) ) 1 Since x = 1 for x ( 1 , 0 ) = ( 1 + 1 ) 1 = 0.5 \displaystyle \begin{aligned} L_{-}&=\lim_{x\to 0^{-}} \left(1+\{x\}\right)^{\lfloor{x\rfloor}} \\ &= \lim_{x\to 0} \left(1+x-(-1)\right)^{-1}\quad\text{Since }\lfloor{x\rfloor}=-1\quad\text{for }x\in(-1,0) \\ &= \left(1+1 \right)^{-1} \\ &=0.5 \end{aligned}

Similarly,

L + = lim x 0 + ( 1 + { x } ) x = lim x 0 ( 1 + x ( 0 ) ) 0 Since x = 0 for x ( 0 , 1 ) = ( 1 + 0 ) 0 = 1 \displaystyle \begin{aligned} L_{+}&=\lim_{x\to 0^{+}} \left(1+\{x\}\right)^{\lfloor{x\rfloor}} \\ &= \lim_{x\to 0} \left(1+x-(0)\right)^{0}\quad\text{Since }\lfloor{x\rfloor}=0\quad\text{for }x\in(0,1) \\ &= \left(1+0\right)^{0} \\ &=1 \end{aligned}

Hence LHL= 0.5 0.5 and RHL= 1 1

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...