A limit

Calculus Level 4

lim x 0 ( sin ( 3 x ) x 3 + a x 2 + b ) = 0 \large \lim_{x\to 0} \left(\frac{\sin(3x)}{x^3} + \frac{a}{x^2} + b \right) = 0

Constants a a and b b are such that the limit above holds. Find a + b a+b .


The answer is 1.5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
Mar 23, 2019

L = lim x 0 ( sin ( 3 x ) x 3 + a x 2 + b ) = lim x 0 ( sin ( 3 x ) + a x x 3 + b ) A 0/0 case, L’H o ˆ pital’s rule applies = lim x 0 ( 3 cos ( 3 x ) + a 3 x 2 + b ) For limit to exist 3 cos 0 + a = 0 a = 3 = lim x 0 ( 9 sin ( 3 x ) 6 x + b ) Apply L’H o ˆ pital’s rule again = lim x 0 ( 27 cos ( 3 x ) 6 + b ) and again. = 9 2 + b = 0 b = 9 2 \begin{aligned} L & = \lim_{x \to 0} \left(\frac {\sin (3x)}{x^3} + \frac a{x^2} + b \right) \\ & = \lim_{x \to 0} \left({\color{#3D99F6} \frac {\sin (3x) + ax}{x^3}} + b \right) & \small \color{#3D99F6} \text{A 0/0 case, L'Hôpital's rule applies} \\ & = \lim_{x \to 0} \left({\color{#3D99F6} \frac {3\cos (3x) + a}{3x^2}} + b \right) & \small \color{#3D99F6} \text{For limit to exist }3\cos 0 + a = 0 \implies a = -3 \\ & = \lim_{x \to 0} \left({\color{#3D99F6} \frac {-9\sin (3x)}{6x}} + b \right) & \small \color{#3D99F6} \text{Apply L'Hôpital's rule again} \\ & = \lim_{x \to 0} \left({\color{#3D99F6} \frac {-27\cos (3x)}{6}} + b \right) & \small \color{#3D99F6} \text{and again.} \\ & = - \frac 92 + {\color{#3D99F6}b} = 0 & \small \color{#3D99F6} \implies b = \frac 92 \end{aligned}

Therefore, a + b = 3 + 9 2 = 1.5 a+b = - 3 + \dfrac 92 = \boxed{1.5} .

First recall the Maclaurin series sin ( u ) = u u 3 3 ! + O ( x 5 ) \sin(u) = u - \dfrac{u^{3}}{3!} + O(x^{5}) , so in the case u = 3 x u = 3x we have

sin ( 3 x ) x 3 + a x 2 + b = 1 x 3 ( 3 x 27 x 3 6 + O ( x 5 ) ) + a x 2 + b = 3 x 2 9 2 + O ( x 2 ) + a x 2 + b = 3 + a x 2 + b 9 2 + O ( x 2 ) \dfrac{\sin(3x)}{x^{3}} + \dfrac{a}{x^{2}} + b = \dfrac{1}{x^{3}}\left(3x - \dfrac{27x^{3}}{6} + O(x^{5})\right) + \dfrac{a}{x^{2}} + b = \dfrac{3}{x^{2}} - \dfrac{9}{2} + O(x^{2}) + \dfrac{a}{x^{2}} + b = \dfrac{3 + a}{x^{2}} + b - \dfrac{9}{2} + O(x^{2}) ,

which will only approach 0 0 as x 0 x \to 0 if a = 3 a = -3 and b = 9 2 b = \dfrac{9}{2} , giving us a + b = 3 + 9 2 = 3 2 = 1.5 a + b = -3 + \dfrac{9}{2} = \dfrac{3}{2} = \boxed{1.5} .

The given expression is of the form 0/0. Applying L'Hospital's rule we get the same limit in the form of a ratio : 3cos(3x) +a +3b(x^2) and 3(x^2). This must be of the form 0/0, implying a=-3. Applying the rule twice more, we get b=4.5 Therefore a+b= 4.5 - 3 = 1.5

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...