A little bit of analytic geometry

Calculus Level pending

Given a circle of radius 6 6 centered at the origin, and an ellipse of a semi-major axis of 5 5 and a semi-minor axis of 2 2 , you want to place the ellipse inside the circle such that its major axis is horizontal, and its center is below the origin, so that it is tangent to the circle at two symmetrical points about the vertical y y -axis. If the right tangency point is ( x 1 , y 1 ) (x_1, y_1) and the center of the ellipse is at ( 0 , y 0 ) (0, y_0) , then find x 1 y 1 y 0 x_1 - y_1 - y_0 .


The answer is 11.444.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 27, 2021

The equations of the circle and the ellipse are

{ x 2 + y 2 = 36 . . . ( 1 ) x 2 25 + ( y y 0 ) 2 4 = 1 . . . ( 2 ) \begin{cases} x^2+y^2 = 36 & ...(1) \\ \dfrac {x^2}{25} + \dfrac {(y-y_0)^2}4 = 1 & ...(2) \end{cases}

At the tangent point P ( x 1 , y 1 ) P(x_1,y_1) the gradients of the ellipse and the circle are the same. From differentiation with respect to x x , we have:

{ ( 1 ) : 2 x + 2 y d y d x = 0 d y d x = x y ( 2 ) : 2 x 25 + 2 ( y y 0 ) 4 d y d x = 0 d y d x = 4 x 25 ( y y 0 ) \begin{cases} (1): \quad 2x + 2y \cdot \dfrac {dy}{dx} = 0 & \implies \dfrac {dy}{dx} = - \dfrac xy \\ (2): \quad \dfrac {2x}{25} + \dfrac {2(y-y_0)}4 \cdot \dfrac {dy}{dx} = 0 & \implies \dfrac {dy}{dx} = - \dfrac {4x}{25(y-y_0)} \end{cases}

x 1 y 1 = 4 x 1 25 ( y 1 y 0 ) y 1 = 25 21 y 0 \implies \frac {x_1}{y_1} = \frac {4x_1}{25(y_1-y_0)} \implies y_1 = \frac {25}{21}y_0

From ( 1 ) 25 × ( 2 ) (1) - 25 \times (2) :

y 1 2 25 4 ( y 1 y 0 ) 2 = 36 25 2 5 2 2 1 2 y 0 2 25 4 ( 4 21 y 0 ) 2 = 11 25 21 y 0 2 = 11 y 0 = 231 5 Since y 0 < 0 y 1 = 25 21 y 0 = 5 11 21 ( 1 ) : x 1 = 36 y 1 2 = 481 21 x 1 y 1 y 0 = 481 21 + 5 11 21 + 231 5 11.4 \begin{aligned} y_1^2 - \frac {25}4 (y_1 - y_0)^2 & = 36 - 25 \\ \frac {25^2}{21^2}y_0^2 - \frac {25}4 \left(\frac 4{21} y_0 \right)^2 & = 11 \\ \frac {25}{21} y_0^2 & = 11 \\ \implies y_0 & = - \frac {\sqrt{231}}5 & \small \blue{\text{Since }y_0 < 0} \\ y_1 & = \frac {25}{21}y_0 = - 5 \sqrt{\frac {11}{21}} \\ (1): \quad \quad x_1 & = \sqrt{36-y_1^2} = \sqrt{\frac {481}{21}} \\ \implies x_1 - y_1 - y_0 & = \sqrt{\frac {481}{21}} + 5 \sqrt{\frac {11}{21}} + \frac {\sqrt{231}}5 \\ & \approx \boxed{11.4} \end{aligned}

Nice alternative solution via calculus, Chew-Seong! Have a good day.....

tom engelsman - 2 weeks, 2 days ago

Log in to reply

Thanks. I think it is easier and straight forward.

Chew-Seong Cheong - 2 weeks, 2 days ago
Tom Engelsman
May 26, 2021

Let the ellipse have the equation x 2 25 + ( y y 0 ) 2 4 = 1 \large \frac{x^2}{25} + \frac{(y-y_{0})^2}{4} = 1 and the circle be x 2 + y 2 = 36. x^2 + y^2 = 36. If we substitute x 2 = 36 y 2 x^2 = 36-y^2 into the elliptical equation, we now obtain a quadratic in y : y:

36 y 2 25 + ( y y 0 ) 2 4 = 1 ; \large \frac{36-y^2}{25} + \frac{(y-y_{0})^2}{4} = 1;

or 4 ( 36 y 2 ) + 25 ( y y 0 ) 2 = 100 ; 4(36-y^2) + 25(y-y_{0})^2 = 100;

or 21 y 2 50 y 0 y + ( 25 y 0 2 + 44 ) = 0 ; 21y^2 - 50y_{0}y +(25y^{2}_{0}+44)=0;

or y = 50 y 0 ± 2500 y 0 2 4 ( 21 ) ( 25 y 0 2 + 44 ) 42 = 50 y 0 ± 400 y 0 2 3696 42 . \large y = \frac{50y_{0} \pm \sqrt{2500y^{2}_{0} - 4(21)(25y^{2}_{0}+44)}}{42} = \frac{50y_{0} \pm \sqrt{400y^{2}_{0}-3696}}{42}.

If the ellipse is to intersect the circle in only one value for y y , then the discriminant above shall equal zero y 0 2 = 3696 400 y 0 = ± 3.04 \Rightarrow y^{2}_{0} = \frac{3696}{400} \Rightarrow y_{0} = \pm 3.04 (of which we only admit the negative root as the ellipse lies entirely below the x x- axis). This in turn yields the right-tangency point y 1 = 50 ( 3.04 ) 42 = 3.619 , x 1 = 36 3.61 9 2 = 4.786. y_{1} = \frac{50(-3.04)}{42} = -3.619, x_{1} = \sqrt{36-3.619^2} = 4.786. The final desired result computes to:

x 1 y 1 y 0 = 4.786 ( 3.619 ) ( 3.04 ) = 11.445 . x_{1}-y_{1}-y_{0} = 4.786 -(-3.619) - (-3.04) = \boxed{11.445}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...