A Little Bit of Complex Analysis

Calculus Level 3

Let Log ( ) \text{Log }(\cdot) denote the principal branch of the complex logarithm. Then

0 1 Log ( x x 1 ) d x = i a π b \int_0^1 \text{Log} \left(\frac{x}{x-1}\right) \, dx=i a \pi ^b

where a , b a,b are integers. Submit a + b a+b .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 21, 2017

I = 0 1 log ( x x 1 ) d x By integration by parts = x log ( x x 1 ) 0 1 0 1 x ( 1 x 1 x 1 ) d x = x log ( x x 1 ) 0 1 + 0 1 1 x 1 d x = x log ( x x 1 ) + log ( x 1 ) 0 1 = x log ( x x 1 ) + log ( 1 x ) 0 1 See note. = log ( 1 ) By Euler’s formula e i θ = cos θ + i sin θ = log ( e i π 2 ) Considering only the principal branch = i π \begin{aligned} I & = \int_0^1 \log \left(\frac x{x-1}\right) dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = x \log \left(\frac x{x-1}\right) \bigg|_0^1 - \int_0^1 x\left(\frac 1x - \frac 1{x-1}\right) dx \\ & = x \log \left(\frac x{x-1}\right) \bigg|_0^1 + \int_0^1 \frac 1{x-1} dx \\ & = x \log \left(\frac x{x-1}\right) + \log (|x-1|) \bigg|_0^1 \\ & = x \log \left(\frac x{x-1}\right) + \log (1-x) \bigg|_0^1 & \small \color{#3D99F6} \text{See note.} \\ & = \log(-1) & \small \color{#3D99F6} \text{By Euler's formula }e^{i\theta} = \cos \theta + i\sin \theta \\ & = \log \left(e^{i\frac \pi 2}\right) & \small \color{#3D99F6} \text{Considering only the principal branch} \\ & = i\pi \end{aligned}

a + b = 1 + 1 = 2 \implies a + b = 1+1 = \boxed{2}


Note:

L ( 1 ) = lim x 1 ( x log x x log ( x 1 ) + log ( 1 x ) ) = 0 + lim x 1 log ( 1 x x 1 ) = log ( 1 ) \begin{aligned} L(1) & = \lim_{x \to 1} \left(x \log x - x \log (x-1) + \log (1-x)\right) \\ & = 0 + \lim_{x \to 1} \log \left(\frac {1-x}{x-1}\right) \\ & = \log (-1) \end{aligned}

L ( 0 ) = lim x 0 ( x log x x log ( x 1 ) + log ( 1 x ) ) = lim x 0 log x 1 x 0 + 0 A / case, L’H o ˆ pital’s rule applies = lim x 0 1 x 1 x 2 Differentiate up and down w.r.t. x = 0 \begin{aligned} L(0) & = \lim_{x \to 0} \left(x \log x - x \log (x-1) + \log (1-x)\right) \\ & = {\color{#3D99F6} \lim_{x \to 0} \frac {\log x}{\frac 1x}} - 0 + 0 & \small \color{#3D99F6} \text{A }\infty/\infty \text{ case, L'Hôpital's rule applies} \\ & = {\color{#3D99F6} \lim_{x \to 0} \frac {\frac 1x}{-\frac 1{x^2}}} & \small \color{#3D99F6} \text{Differentiate up and down w.r.t. }x \\ & = 0 \end{aligned}

L ( 1 ) L ( 0 ) = log ( 1 ) \implies L(1) - L(0) = \log (-1) .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...