A little change goes a long way

Calculus Level 2

Following this .

lim x 2 x ( x + 1 ) x = ? \large \lim\limits_{x\to \infty} \sqrt{2x(x+1)}-x =\space ?

\infty 1 0 1 2 \frac{1}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jan 11, 2018

L = lim x 2 x ( x + 1 ) x Multiplied by 2 x ( x + 1 ) + x 2 x ( x + 1 ) + x = lim x 2 x ( x + 1 ) x 2 2 x ( x + 1 ) + x = lim x x 2 + 2 x 2 x 2 + 2 x + x Divide up and down by x = lim x x + 2 2 + 2 x + 1 = \begin{aligned} L & = \lim_{x \to \infty} \sqrt{2x(x+1)} - x & \small \color{#3D99F6} \text{Multiplied by }\frac {\sqrt{2x(x+1)} + x}{\sqrt{2x(x+1)} + x} \\ & = \lim_{x \to \infty} \frac {2x(x+1) - x^2}{\sqrt{2x(x+1)} + x} \\ & = \lim_{x \to \infty} \frac {x^2+2x}{\sqrt{2x^2+2x} + x} & \small \color{#3D99F6} \text{Divide up and down by }x \\ & = \lim_{x \to \infty} \frac {x+2}{\sqrt{2+\frac 2x} + 1} \\ & = \boxed{\infty} \end{aligned}

Leonel Castillo
Jan 1, 2018

lim x 2 x ( x + 1 ) x = lim x ( 2 x ( x + 1 ) x ) ( 2 x ( x + 1 ) + x ) 2 x ( x + 1 ) + x = lim x 2 x ( x + 1 ) x 2 2 x ( x + 1 ) + x = lim x O ( x 2 ) O ( x ) = \lim_{x \to \infty} \sqrt{2x(x+1)} - x = \lim_{x \to \infty} \frac{ \left( \sqrt{2x(x+1)} - x \right) \left( \sqrt{2x(x+1)} + x \right)}{ \sqrt{2x(x+1)} + x } = \lim_{x \to \infty} \frac{2x(x+1) - x^2}{\sqrt{2x(x+1)}+x} = \lim_{x \to \infty} \frac{O(x^2)}{O(x)} = \infty

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...