A little game of x x

Algebra Level 1

2 x + 2 x + 2 x = 3 16 \large 2^x + 2^x + 2^x = \dfrac3{16}

Find the value of x x satisfying the equation above.


The answer is -4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Ratul Pan
Mar 27, 2016

2 x + 2 x + 2 x = 3 16 \ 2^x + 2^x + 2^x = \frac3{16}
o r , 3 × 2 x = 3 16 or,~~\ 3 \times2^x = \frac3{16} o r , 2 x = 1 16 or,~~\ 2^x = \frac{1}{16}
o r , 2 x = ( 1 2 ) 4 or,~~\ 2^x = (\frac{1}{2})^4
o r , 2 x = 2 4 or,~~\ 2^x = 2^{-4}
S i n c e t h e b a s e s a r e s a m e , c o m p a r i n g t h e p o w e r s Since~~the~~ bases ~~are~~ same~~,~~ comparing ~~the~~powers
o r , x = 4 or,~~\boxed{\large x~=~-4}


Nehemiah Osei
Mar 25, 2016

3( 2 x 2^x )= 3 16 \frac{3}{16}

2 x 2^x = 1 16 \frac{1}{16}

x = log 2 1 16 x=\log_2 \frac{1}{16}

x = 4 x=-4

In general for 2 x + 2 x + 2 x = 3 16 2^x+2^x+2^x =\frac{3}{16} is:

2 x + 2 x + 2 x = 3 16 3 2 x = 3 16 Refine the 2 x + 2 x + 2 x into 3 2 x 48 2 x = 3 2 x = 1 16 Apply the rule: If a f ( x ) = a g ( x ) , then f ( x ) = g ( x ) 2 x = 2 4 x = 4 \begin{aligned}2^x+2^x+2^x =\frac{3}{16} &\Rightarrow 32^x= \frac{3}{16}\quad\quad\quad\quad\quad\quad\quad\quad{\text{Refine the } 2^x+2^x+2^x \space \text{into } 32^x} \\& \Rightarrow 482^x= 3 \\& \Rightarrow 2^x = \frac{1}{16} \quad\quad\quad\quad\quad\quad\quad\quad{\text{Apply the rule: If }a^{f(x)} = a^{g(x)} \space\text{, then } f(x)=g(x) } \\& \Rightarrow 2^x = 2^{-4} \\&\Rightarrow x = -4 \space\space\space\space \square \end{aligned}

Other method for computation

\(\begin{aligned} 2^x+2^x+2^x =\frac{3}{16} &\Rightarrow 3(2^x) = \frac{3}{16} \\&\Rightarrow 2^x = \frac{3}{16 \cdot 3} \\&\Rightarrow 2^x=\frac{3}{48} \\&\Rightarrow 2^x = \frac{1}{16} \\&\Rightarrow 2^x = 2^{-4} \\&\Rightarrow x= -4 \space\space\space\space\space \square \end{aligned}

FIN!!! \large \text{FIN!!!}

How is 2 x + 2 x + 2 x = 3 2 x ? 2^x + 2^x + 2^x = 32^x?

Mehul Arora - 5 years, 2 months ago

Log in to reply

Square Both sides

A Former Brilliant Member - 5 years, 2 months ago
Nikhil Sharma
Mar 28, 2016

3 X 2^x = 3/16.... 2^x = 1/16.... 16 X 2^x = 1.... 2^4 X 2^x = 1.... 2^{x+4} = 2^0.... x+4 = 0.... x = -4

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...