A little long recursion RELOADED

Algebra Level 5

If a a , b b and c c are complex numbers such that:

a 2 + b 2 + c 2 = 25 a^2+b^2+c^2=25 a 3 + b 3 + c 3 = 106 a^3+b^3+c^3=106 a 4 + b 4 + c 4 = 477 a^4+b^4+c^4=477 a + b + c N a+b+c \in N

Then we let: x + y + z = a 5 + b 5 + c 5 + 17 x+y+z=\sqrt{a^5+b^5+c^5+17} x y + x z + y z = a 7 + b 7 + c 7 42 xy+xz+yz=\sqrt{a^7+b^7+c^7-42} x y z = a 6 + b 6 + c 6 + 51 xyz=\sqrt{a^6+b^6+c^6+51}

Find ( x y ) ( y z ) ( z x ) \lfloor \sqrt{|(x-y)(y-z)(z-x)|} \rfloor .


The answer is 79.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let S 1 = a + b + c S_1=a+b+c , S 2 = a b + a c + b c S_2=ab+ac+bc , S 3 = a b c S_3=abc and P n = a n + b n + c n P_n=a^n+b^n+c^n .

By Newton's Sums we know:

P 1 = S 1 P_1=S_1

P 2 = P 1 S 1 2 S 2 = S 1 2 2 S 2 P_2=P_1S_1-2S_2 = S_1^2-2S_2

P 3 = P 2 S 1 P 1 S 2 + 3 S 3 = S 1 3 3 S 1 S 2 + 3 S 3 P_3=P_2S_1-P_1S_2+3S_3 = S_1^3-3S_1S_2+3S_3

P n = P n 1 S 1 P n 2 S 2 + P n 3 S 3 P_n=P_{n-1}S_1-P_{n-2}S_2+P_{n-3}S_3

Hence, P 4 = P 3 S 1 P 2 S 2 + P 1 S 3 = S 1 4 4 S 1 2 S 2 + 4 S 1 S 3 + 2 S 2 2 P_4=P_3S_1-P_2S_2+P_1S_3 = S_1^4-4S_1^2S_2+4S_1S_3+2S_2^2

With the known values the following system is formed:

S 1 2 2 S 2 = 25 S_1^2-2S_2=25

S 1 3 3 S 1 S 2 + 3 S 3 = 106 S_1^3-3S_1S_2+3S_3=106

S 1 4 4 S 1 2 S 2 + 4 S 1 S 3 + 2 S 2 2 = 477 S_1^4-4S_1^2S_2+4S_1S_3+2S_2^2=477

From the first equation, solve for S 2 S_2 :

S 2 = S 1 2 25 2 S_2=\dfrac{S_1^2-25}{2}

Substitute in the second equation, simplify and solve for S 3 S_3 :

S 1 3 3 S 1 ( S 1 2 25 2 ) + 3 S 3 = 106 S 3 = S 1 3 75 S 1 + 212 6 S_1^3-3S_1\left(\dfrac{S_1^2-25}{2}\right)+3S_3=106 \Longrightarrow S_3=\dfrac{S_1^3-75S_1+212}{6}

Substitute S 2 S_2 and S 3 S_3 in the third equation:

S 1 4 4 S 1 2 ( S 1 2 25 2 ) + 4 S 1 ( S 1 3 75 S 1 + 212 6 ) + 2 ( S 1 2 25 2 ) 2 = 477 S_1^4-4S_1^2\left(\dfrac{S_1^2-25}{2}\right)+4S_1\left(\dfrac{S_1^3-75S_1+212}{6}\right)+2\left(\dfrac{S_1^2-25}{2}\right)^2=477

Expand and simplify:

S 1 4 150 S 1 2 + 848 S 1 987 = 0 S_1^4-150S_1^2+848S_1-987=0

Using the rational root test it factors as:

( S 1 7 ) ( S 1 3 + 7 S 1 2 101 S 1 + 141 ) = 0 (S_1-7)(S_1^3+7S_1^2-101S_1+141)=0

The second factor doesn't have natural solutions, hence S 1 = 7 S_1=7 .

Obtain S 2 S_2 and S 3 S_3 :

S 2 = S 1 2 25 2 = 7 2 25 2 = 12 S_2=\dfrac{S_1^2-25}{2}=\dfrac{7^2-25}{2}=12

S 3 = S 1 3 75 S 1 + 212 6 = 7 3 75 ( 7 ) + 212 6 = 5 S_3=\dfrac{S_1^3-75S_1+212}{6}=\dfrac{7^3-75(7)+212}{6}=5

Now, obtain P 5 P_5 , P 6 P_6 and P 7 P_7 :

P n = 7 P n 1 12 P n 2 + 5 P n 3 P_n=7P_{n-1}-12P_{n-2}+5P_{n-3}

P 5 = 7 P 4 12 P 3 + 5 P 2 = 7 ( 477 ) 12 ( 106 ) + 5 ( 25 ) = 2192 P_5=7P_4-12P_3+5P_2=7(477)-12(106)+5(25)=2192

P 6 = 7 P 5 12 P 4 + 5 P 3 = 7 ( 2192 ) 12 ( 477 ) + 5 ( 106 ) = 10150 P_6=7P_5-12P_4+5P_3=7(2192)-12(477)+5(106)=10150

P 7 = 7 P 6 12 P 5 + 5 P 4 = 7 ( 10150 ) 12 ( 2192 ) + 5 ( 477 ) = 47131 P_7=7P_6-12P_5+5P_4=7(10150)-12(2192)+5(477)=47131

Hence:

x + y + z = 2192 + 17 = 47 x+y+z=\sqrt{2192+17}=47

x y + x z + y z = 47131 42 = 217 xy+xz+yz=\sqrt{47131-42}=217

x y z = 10150 + 51 = 101 xyz=\sqrt{10150+51}=101

Finally, let P ( m ) P(m) have roots x x , y y and z z :

P ( m ) = ( m x ) ( m y ) ( m z ) = m 3 ( x + y + z ) m 2 + ( x y + x z + y z ) m x y z P(m)=(m-x)(m-y)(m-z)=m^3-(x+y+z)m^2+(xy+xz+yz)m-xyz

P ( m ) = m 3 47 m 2 + 217 m 101 P(m)=m^3-47m^2+217m-101

By definition, the discriminant of P ( m ) = m 3 + b m 2 + c m + d P(m)=m^3+bm^2+cm+d is:

Δ = b 2 c 2 4 c 3 4 b 3 d + 18 b c d 27 d 2 = ( x y ) 2 ( y z ) 2 ( z x ) 2 \Delta=b^2c^2-4c^3-4b^3d+18bcd-27d^2=(x-y)^2(y-z)^2(z-x)^2

So, ( x y ) 2 ( y z ) 2 ( z x ) 2 = ( 47 ) 2 ( 217 ) 2 4 ( 217 ) 3 4 ( 47 ) 3 ( 101 ) + 18 ( 47 ) ( 217 ) ( 101 ) 27 ( 101 ) 2 = 39468212 (x-y)^2(y-z)^2(z-x)^2=(-47)^2(217)^2-4(217)^3-4(-47)^3(-101)+18(-47)(217)(-101)-27(-101)^2=39468212

And finally:

( x y ) ( y z ) ( z x ) = 39468212 4 = 79 \lfloor \sqrt{|(x-y)(y-z)(z-x)|} \rfloor=\lfloor \sqrt[4]{39468212} \rfloor=\boxed{79}

Nice Solution! Done the same way here! Upvoted!

:)

Yash Singhal - 6 years, 5 months ago

A little long? Waiting for a very long recursion reloaded. :D

Satvik Golechha - 6 years, 4 months ago

Could u just explain me the last three steps??

Bala vidyadharan - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...