Given that cos x = 3 1 , find the value of n = 0 ∑ ∞ 3 n cos ( n x ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let
S 1 S 2 i S 2 = 3 0 cos 0 + 3 1 cos x + 3 2 cos ( 2 x ) + ⋯ = 3 0 sin 0 + 3 1 sin x + 3 2 sin ( 2 x ) + ⋯ = i 3 0 sin 0 + i 3 1 sin x + i 3 2 sin ( 2 x ) + ⋯
Add both the equations .
S 1 + i S 2 = ( 3 0 cos 0 + i 3 0 sin 0 ) + ( 3 1 cos x + i 3 1 sin x ) + ( 3 2 cos ( 2 x ) + i 3 2 sin ( 2 x ) ) + ⋯ = 3 0 1 e 0 ⋅ i + 3 1 1 e x ⋅ i + 3 2 1 e 2 x ⋅ i + ⋯ = 1 − 3 e i x 1
e i x = cos x + i sin x = 3 1 + i 3 k Let sin x = 3 k , k = ± 2 2
S 1 + i S 2 = 1 − 9 1 ( 1 + i k ) 1 = 8 − i k 9 S 1 + i S 2 = 6 4 + k 2 9 ( 8 + i k ) S 1 + i S 2 = 6 4 + k 2 7 2 + i ( 6 4 + k 2 9 k ) S 1 = 7 2 7 2 = 1 S 2 = ± 4 2
It is kind of odd for
3 1 cos x + 3 2 cos ( 2 x ) + 3 3 cos ( 3 x ) + ⋯ = 0 at cos x = 3 1
haan to advance kaise hua (ADVANCED -5 ) ?
Log in to reply
I preparing for my preboard exams now . I have not given advanced 5 .
Problem Loading...
Note Loading...
Set Loading...
S = n = 0 ∑ ∞ 3 n cos ( n x ) = n = 0 ∑ ∞ 3 n ℜ { e n x i } ℜ { z } denotes the real part of z = ℜ { n = 0 ∑ ∞ 3 n e n x i } = ℜ { 1 − 3 e x i 1 } for ∣ ∣ ∣ ∣ 3 e x i ∣ ∣ ∣ ∣ = 3 1 < 1 = ℜ { 3 − e x i 3 } = ℜ { 3 − cos x − i sin x 3 } = ℜ { ( 3 − cos x − i sin x ) ( 3 − cos x + i sin x ) 3 ( 3 − cos x + i sin x ) } = ℜ { ( 3 − cos x ) 2 + sin 2 x 3 ( 3 − cos x + i sin x ) } = ℜ { 9 − 6 cos x + cos 2 x + sin 2 x 9 − 3 cos x + i 3 sin x } = ℜ { 1 0 − 6 cos x 9 − 3 cos x + i 3 sin x } = 1 0 − 6 cos x 9 − 3 cos x = 1 0 − 6 ⋅ 3 1 9 − 3 ⋅ 3 1 = 1