A little too complex

Calculus Level 2

Given that cos x = 1 3 \cos x=\frac{1}{3} , find the value of n = 0 cos ( n x ) 3 n . \large \sum _{ n=0 }^{ \infty }{ \frac { \cos { (nx) } }{ { 3 }^{ n } } }.


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Dec 29, 2016

S = n = 0 cos ( n x ) 3 n = n = 0 { e n x i } 3 n { z } denotes the real part of z = { n = 0 e n x i 3 n } = { 1 1 e x i 3 } for e x i 3 = 1 3 < 1 = { 3 3 e x i } = { 3 3 cos x i sin x } = { 3 ( 3 cos x + i sin x ) ( 3 cos x i sin x ) ( 3 cos x + i sin x ) } = { 3 ( 3 cos x + i sin x ) ( 3 cos x ) 2 + sin 2 x } = { 9 3 cos x + i 3 sin x 9 6 cos x + cos 2 x + sin 2 x } = { 9 3 cos x + i 3 sin x 10 6 cos x } = 9 3 cos x 10 6 cos x = 9 3 1 3 10 6 1 3 = 1 \begin{aligned} S & = \sum_{n=0}^\infty \frac {\cos (nx)}{3^n} \\ & = \sum_{n=0}^\infty \frac {{\color{#3D99F6}\Re} \left \{e^{nxi} \right \}}{3^n} \quad \quad \small \color{#3D99F6} \Re \{z\} \text{ denotes the real part of }z \\ & = \Re \left \{ \sum_{n=0}^\infty \frac {e^{nxi} }{3^n} \right \} \\ & = \Re \left \{\frac 1{1-\frac {e^{xi}}3} \right \} \quad \quad \small \color{#3D99F6} \text{for } \left|\frac {e^{xi}}3\right| = \frac 13 < 1 \\ & = \Re \left \{\frac 3{3-e^{xi}} \right \} \\ & = \Re \left \{\frac 3{3- \cos x - i \sin x} \right \} \\ & = \Re \left \{\frac {3(3- \cos x + i \sin x)}{(3- \cos x - i \sin x)(3- \cos x + i \sin x)} \right \} \\ & = \Re \left \{\frac {3(3- \cos x + i \sin x)}{(3- \cos x)^2 + \sin^2 x} \right \} \\ & = \Re \left \{\frac {9- 3\cos x + i3 \sin x}{9- 6\cos x + \cos^2 x + \sin^2 x} \right \} \\ & = \Re \left \{\frac {9- 3\cos x + i3 \sin x}{10- 6\cos x} \right \} \\ & = \frac {9- 3\cos x }{10- 6\cos x} = \frac {9- 3 \cdot \frac 13 }{10- 6\cdot \frac 13} = \boxed{1} \end{aligned}

Sabhrant Sachan
Dec 29, 2016

Let

S 1 = cos 0 3 0 + cos x 3 1 + cos ( 2 x ) 3 2 + S 2 = sin 0 3 0 + sin x 3 1 + sin ( 2 x ) 3 2 + i S 2 = i sin 0 3 0 + i sin x 3 1 + i sin ( 2 x ) 3 2 + \begin{aligned} S_{1} & = \dfrac{\cos{0}}{3^{0}}+\dfrac{\cos{x}}{3^{1}}+\dfrac{\cos{(2x)}}{3^{2}}+\cdots \\ S_{2} & = \dfrac{\sin{0}}{3^{0}}+\dfrac{\sin{x}}{3^{1}}+\dfrac{\sin{(2x)}}{3^{2}}+\cdots \\ iS_{2} & = i\dfrac{\sin{0}}{3^{0}}+i\dfrac{\sin{x}}{3^{1}}+i\dfrac{\sin{(2x)}}{3^{2}}+\cdots \end{aligned}

Add both the equations .

S 1 + i S 2 = ( cos 0 3 0 + i sin 0 3 0 ) + ( cos x 3 1 + i sin x 3 1 ) + ( cos ( 2 x ) 3 2 + i sin ( 2 x ) 3 2 ) + = 1 3 0 e 0 i + 1 3 1 e x i + 1 3 2 e 2 x i + = 1 1 e i x 3 \begin{aligned} S_{1}+iS_{2} & = \left( \dfrac{\cos{0}}{3^{0}}+i\dfrac{\sin{0}}{3^{0}} \right) + \left( \dfrac{\cos{x}}{3^{1}}+i\dfrac{\sin{x}}{3^{1}} \right) + \left( \dfrac{\cos{(2x)}}{3^{2}}+i\dfrac{\sin{(2x)}}{3^{2}} \right) + \cdots \\ & = \dfrac{1}{3^{0}}e^{0\cdot i}+ \dfrac{1}{3^{1}}e^{x\cdot i}+ \dfrac{1}{3^{2}}e^{2x\cdot i}+\cdots \\ & = \dfrac{1}{1-\dfrac{e^{ix}}{3}} \end{aligned}

e i x = cos x + i sin x = 1 3 + i k 3 Let sin x = k 3 , k = ± 2 2 e^{ix} = \cos{x}+i\sin{x} = \dfrac{1}{3} + i \dfrac{k}{3} \hspace{8mm} \text{Let } \sin{x} = \dfrac{k}{3} \hspace{2mm} , k = \pm 2\sqrt{2}

S 1 + i S 2 = 1 1 1 9 ( 1 + i k ) = 9 8 i k S 1 + i S 2 = 9 ( 8 + i k ) 64 + k 2 S 1 + i S 2 = 72 64 + k 2 + i ( 9 k 64 + k 2 ) S 1 = 72 72 = 1 S 2 = ± 2 4 S_{1}+iS_{2} = \dfrac{1}{1-\frac{1}{9}(1+ik)} = \dfrac{9}{8-ik} \\ S_{1}+iS_{2} = \dfrac{9(8+ik)}{64+k^2 } \\ S_{1}+iS_{2} = \dfrac{72}{64+k^2 } +i\left(\dfrac{9k}{64+k^2}\right) \\ \boxed{S_{1} = \dfrac{72}{72} = 1} \hspace{5mm} S_{2} = \pm\dfrac{\sqrt{2}}{4}


It is kind of odd for

cos x 3 1 + cos ( 2 x ) 3 2 + cos ( 3 x ) 3 3 + = 0 \dfrac{\cos{x}}{3^{1}}+\dfrac{\cos{(2x)}}{3^{2}}+\dfrac{\cos{(3x)}}{3^{3}}+\cdots = 0 \hspace{5.5mm} at cos x = 1 3 \cos x =\dfrac{1}{3}

haan to advance kaise hua (ADVANCED -5 ) ?

A Former Brilliant Member - 4 years, 5 months ago

Log in to reply

I preparing for my preboard exams now . I have not given advanced 5 .

Sabhrant Sachan - 4 years, 5 months ago

Log in to reply

oh! nice !

A Former Brilliant Member - 4 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...