Cyclical System

Algebra Level 5

{ x + y + z = 1 x y + y z + x z = 1 \begin{cases} x+y+z=1\\ xy+yz+xz =-1\end{cases} If x , y x,y and z z are reals satisfying the system of equation above, then find the maximum value of x x to 2 decimal places.


The answer is 1.67.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Rishabh Jain
Feb 4, 2016

x+y+z=1 y+z=1-x....(1) \Rightarrow \color{#D61F06}{\text{y+z=1-x....(1)}} x y + y z + z x = 1 x ( y + z ) + z x = 1 x ( 1 x ) + y z = 1... ( Using 1 ) xy+yz+zx=-1\\ \Rightarrow x(y+z)+zx=-1 \\ \Rightarrow x(1-x)+yz=-1...(\small{\text{Using 1}}) yz = x 2 x 1.... ( 2 ) \Rightarrow \color{#D61F06}{\text{yz}=x^2-x-1....(2)} Applying AM-GM, ( y + z ) 2 4 y z (y+z)^2\geq 4yz and using (1) and (2) ( 1 x ) 2 4 ( x 2 x 1 ) \Rightarrow (1-x)^2 \geq 4(x^2-x-1) 3 x 2 2 x 5 0 \Rightarrow 3x^2-2x-5\leq 0 ( x + 1 ) ( 3 x 5 ) 0 (x+1)(3x-5)\leq0 1 x 5 3 -1\leq x\leq \frac{5}{3} Hence maximum value of x is 5 3 = 1.67 \Large\boxed{\frac{5}{3}=1.67} Corresponding to x's maximum value, y=z=- 1 3 \frac{1}{3}

Otto Bretscher
Feb 4, 2016

Substituting z = 1 x y z=1-x-y gives the ellipse x 2 + y 2 + x y x y 1 = 0 x^2+y^2+xy-x-y-1=0 .The discriminant when solving for y y is 3 x 2 + 2 x + 5 = ( x + 1 ) ( 3 x 5 ) -3x^2+2x+5=-(x+1)(3x-5) , so that the largest value is x = 5 3 1.66 x=\frac{5}{3}\approx\boxed{1.66}

Why must discriminant of conic section (in this case, an ellipse) equates to 0?

Pi Han Goh - 5 years, 4 months ago

Log in to reply

I'm talking about the discriminant of y 2 + ( x 1 ) y + x 2 x 1 y^2+(x-1)y+x^2-x-1 here, viewed as a quadratic equation in y y . This discriminant must be 0 \geq 0 .

Otto Bretscher - 5 years, 4 months ago

Log in to reply

Oh got it. I immediately assumed that there is no inequality involved due to the absence of it.

Pi Han Goh - 5 years, 4 months ago

Solved the same way (+1) .

Aditya Sky - 5 years, 1 month ago
P C
Feb 4, 2016

We have ( x + y + z ) 2 = x 2 + y 2 + z 2 + 2 ( x y + y z + x z ) = 1 (x+y+z)^2=x^2+y^2+z^2+2(xy+yz+xz)=1

x 2 + y 2 + z 2 = 3 \Rightarrow x^2+y^2+z^2=3 So now we have { x 2 + y 2 + z 2 = 3 x + y + z = 1 \begin{cases} x^2+y^2+z^2=3\\x+y+z=1\end{cases} Using Cauchy-Schwarz inequality we have x 2 + y 2 + z 2 x 2 + ( y + z ) 2 2 = x 2 + ( 1 x ) 2 2 x^2+y^2+z^2\geq x^2+\frac{(y+z)^2}{2} = x^2+\frac{(1-x)^2}{2} 6 3 x 2 2 x + 1 \Leftrightarrow 6\geq 3x^2-2x+1 Solving the inequality and we get 1 x 5 3 -1\leq x\leq\frac{5}{3}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...