A little twist

Algebra Level 5

If α , β \alpha ,\beta are the roots of 2 x 2 5 x + 1 = 0 2x^{2}-5x+1=0 and S n = ( α ) 2 n + ( β ) 2 n S_{n}=(\alpha)^{2n}+(\beta)^{2n} then 4 S 2017 + S 2015 S 2016 \large \frac{ 4 S_{2017} +S_{2015} } {S_{2016}} is:


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Let's find an equation with roots c = α 2 c=\alpha^2 and d = β 2 d=\beta^2 , to do this let y = x 2 y=x^2 , so x = y x=\sqrt{y} :

2 y 5 y + 1 = 0 2 y + 1 = 5 y 4 y 2 + 4 y + 1 = 25 y 4 y 2 21 y + 1 = 0 2y-5\sqrt{y}+1=0 \\ 2y+1=5\sqrt{y} \\ 4y^2+4y+1=25y \\ 4y^2-21y+1=0

Now, S n = ( c ) n + ( d ) n S_n=(c)^n+(d)^n , and since they are roots:

4 c 2 21 c + 1 = 0 4 d 2 21 d + 1 = 0 4c^2-21c+1=0 \\ 4d^2-21d+1=0

We can multiply both sides of each equation by c 2015 c^{2015} and d 2015 d^{2015} :

4 c 2017 21 c 2016 + c 2015 = 0 4 d 2017 21 d 2016 + d 2015 = 0 4c^{2017}-21c^{2016}+c^{2015}=0 \\ 4d^{2017}-21d^{2016}+d^{2015}=0

Finally, add them:

4 ( c 2017 + d 2017 ) 21 ( c 2016 + d 2016 ) + c 2015 + d 2015 = 0 4 S 2017 21 S 2016 + S 2015 = 0 4 S 2017 + S 2015 = 21 S 2016 4 S 2017 + S 2015 S 2016 = 21 4(c^{2017}+d^{2017})-21(c^{2016}+d^{2016})+c^{2015}+d^{2015}=0 \\ 4S_{2017}-21S_{2016}+S_{2015}=0 \\ 4S_{2017}+S_{2015}=21S_{2016} \\ \dfrac{4S_{2017}+S_{2015}}{S_{2016}}=\boxed{21}

This is just a slight modification of the solution. Upon finding out that the quadratic equation 4 x 2 21 x + 1 = 0 4x^2-21x+1=0 has roots that are square of the given quadratic equation, one may see that the problem is equivalent to the recurrence relation 4 S n + 2 = 21 S n + 1 S n 4S_{n+2}=21S_{n+1}-S_n such that 4 S 2017 = 21 S 2016 S 2015 4S_{2017}=21S_{2016}-S_{2015} from which it becomes evident that: 4 S 2017 + S 2015 S 2016 = 21 \frac{4S_{2017}+S_{2015}}{S_{2016}}=21

Rimson Junio - 5 years, 9 months ago

Log in to reply

Yes, that's a shorter and nice path to the solution.

Alan Enrique Ontiveros Salazar - 5 years, 9 months ago

How we get : 4x^2 - 21x +1 because in the question it is different.

Syed Baqir - 5 years, 9 months ago

Log in to reply

It is equation having roots alpha squared and beta squared.

Raven Herd - 5 years, 6 months ago

The required quantity is 4 α 4034 + 4 β 4034 + α 4030 + β 4030 α 4032 + β 4032 \frac{4\alpha^{4034}+4\beta^{4034}+\alpha^{4030}+\beta^{4030}}{\alpha^{4032}+\beta^{4032}} . In the numerator, we can pull out common factors in both alpha and beta and it becomes α 4030 ( 4 α 4 + 1 ) + β 4030 ( 4 β 4 + 1 ) α 4032 + β 4032 \frac{\alpha^{4030}(4\alpha^{4}+1)+\beta^{4030}(4\beta^{4}+1)}{\alpha^{4032}+\beta^{4032}} .

Now given alpha and beta satisfy that quadratic equation, we have 2 α 2 5 α + 1 = 0 2\alpha^2-5\alpha+1=0 . Taking 5 α 5\alpha to the RHS and squaring and simplifying the expression, we get 4 α 4 + 1 = 21 α 2 4\alpha^4+1=21\alpha^2 and a similar expression for beta. Substitute this in the "factored" expression and note that the alpha and beta powers will cancel each other leaving behind 21

Chew-Seong Cheong
Aug 26, 2015

From Vieta's formulas, we have: { α + β = 5 2 α β = 1 2 \begin{cases} \alpha + \beta = \frac{5}{2} \\ \alpha \beta = \frac{1}{2} \end{cases}

Using Newton's sums method, we have:

α 4032 + β 4032 = ( α + β ) ( α 4031 + β 4031 ) α β ( α 4030 + β 4030 ) S 2016 = 5 2 ( α 4031 + β 4031 ) 1 2 S 2015 \begin{aligned} \alpha^{4032} + \beta^{4032} & = (\alpha + \beta) (\alpha^{4031} + \beta^{4031}) - \alpha \beta (\alpha^{4030} + \beta^{4030}) \\ \Rightarrow S_{2016} & = \frac{5}{2} (\alpha^{4031} + \beta^{4031}) - \frac{1}{2} S_{2015} \end{aligned}

5 ( α 4031 + β 4031 ) = 2 S 2016 + S 2015 \color{#3D99F6}{\Rightarrow 5(\alpha^{4031} + \beta^{4031}) = 2S_{2016} + S_{2015}}

α 4034 + β 4034 = ( α + β ) ( α 4033 + β 4033 ) α β ( α 4032 + β 4032 ) S 2017 = 5 2 ( α 4033 + β 4033 ) 1 2 S 2016 2 S 2017 = 5 ( 5 2 S 2016 1 2 ( α 4031 + β 4031 ) ) S 2016 4 S 2017 = 25 S 2016 5 ( α 4031 + β 4031 ) S 2016 4 S 2017 = 25 S 2016 2 S 2016 S 2015 S 2016 4 S 2017 = 21 S 2016 S 2015 4 S 2017 + S 2015 S 2016 = 21 \begin{aligned} \alpha^{4034} + \beta^{4034} & = (\alpha + \beta) (\alpha^{4033} + \beta^{4033}) - \alpha \beta (\alpha^{4032} + \beta^{4032}) \\ \Rightarrow S_{2017} & = \frac{5}{2} (\alpha^{4033} + \beta^{4033}) - \frac{1}{2} S_{2016} \\ 2 S_{2017} & = 5 \left(\frac{5}{2} S_{2016} - \frac{1}{2}(\alpha^{4031} + \beta^{4031})\right) - S_{2016} \\ 4 S_{2017} & = 25 S_{2016} - \color{#3D99F6}{5(\alpha^{4031} + \beta^{4031})} - S_{2016} \\ 4 S_{2017} & = 25 S_{2016} - \color{#3D99F6}{2S_{2016} - S_{2015}} - S_{2016} \\ 4 S_{2017} & = 21 S_{2016} - S_{2015} \\ \Rightarrow \frac{4 S_{2017}+S_{2015}}{S_{2016}} & = \boxed{21} \end{aligned}

Rajdeep Brahma
Jan 11, 2018

4S(n)=21S (n-1)-S (n-2)....prove it by breaking a^k+b^k=(a^(k-1)+b^(k-1))(a+b)-ab (a^(k-2)+b^(k-2))... Then the problem is trivial.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...