A ln Li integral

Calculus Level 5

0 1 ln x x ( 1 x 2 ) Li 2 ( x ) d x = A π B C \large \displaystyle \int_0^1\frac{\ln x}{x(1-x^2)}\text{Li}_2(-x) dx = \frac{A \pi^B}{C}

Where A , B , C A, B, C are positive integers and gcd ( A , C ) = 1 \gcd(A,C) = 1 . Find A + B + C A+B+C .

Notation: Li 2 ( ) \text{Li}_2(\cdot) denotes the dilogarithm function .


The answer is 1461.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Nov 10, 2018

Since L i 2 ( x ) = n = 0 ( x ) n + 1 ( n + 1 ) 2 \mathrm{Li}_2(-x) \; = \; \sum_{n=0}^\infty \frac{(-x)^{n+1}}{(n+1)^2} we deduce that the integral is I = 0 1 ln x x ( 1 x 2 ) L i 2 ( x ) d x = n = 0 ( 1 ) n + 1 ( n + 1 ) 2 0 1 ln x x n 1 x 2 d x = m , n = 0 ( 1 ) n + 1 ( n + 1 ) 2 0 1 ln x x n + 2 m d x = m , n = 0 ( 1 ) n ( n + 1 ) 2 ( n + 2 m + 1 ) 2 = m , n = 0 ( 1 ) n + 2 m ( n + 1 ) 2 ( n + 2 m + 1 ) 2 = N = 1 ( 1 ) N + 1 N 2 1 u N u N ( m o d 2 ) 1 u 2 = 1 2 N = 1 ( 1 ) N + 1 N 2 u = 1 N 1 + ( 1 ) N u u 2 = 1 2 N = 1 ( 1 ) N + 1 N 2 u = 1 N 1 u 2 + 1 2 N = 1 1 N 2 u = 1 N ( 1 ) u + 1 u 2 = 1 2 N = 1 ( 1 ) N + 1 N 2 u = 1 N 1 u 2 + 1 2 u = 1 ( 1 ) u + 1 u 2 N = u 1 N 2 = 1 2 N = 1 ( 1 ) N + 1 N 2 ( u = 1 1 u 2 + 1 N 2 ) = 1 12 π 2 N = 1 ( 1 ) N + 1 N 2 + 1 2 N = 1 ( 1 ) N + 1 N 4 = 1 12 π 2 × 1 12 π 2 + 1 2 × 7 720 π 4 = 17 1440 π 4 \begin{aligned} I & = \; \int_0^1 \frac{\ln x}{x(1-x^2)}\mathrm{Li}_2(-x)\,dx \; = \; \sum_{n=0}^\infty \frac{(-1)^{n+1}}{(n+1)^2}\int_0^1 \frac{\ln x \, x^n}{1-x^2}\,dx \\ & = \; \sum_{m,n=0}^\infty \frac{(-1)^{n+1}}{(n+1)^2}\int_0^1 \ln x \,x^{n+2m}\,dx \; = \; \sum_{m,n=0}^\infty \frac{(-1)^n}{(n+1)^2(n+2m+1)^2} \\ & = \; \sum_{m,n=0}^\infty \frac{(-1)^{n+2m}}{(n+1)^2(n+2m+1)^2} \; = \; \sum_{N=1}^\infty \frac{(-1)^{N+1}}{N^2}\sum_{{1 \le u \le N} \atop {u \equiv N \pmod{2}}}\frac{1}{u^2} \\ & = \; \frac12\sum_{N=1}^\infty\frac{(-1)^{N+1}}{N^2}\sum_{u=1}^N \frac{1 + (-1)^{N-u}}{u^2} \; = \; \frac12\sum_{N=1}^\infty \frac{(-1)^{N+1}}{N^2}\sum_{u=1}^N \frac{1}{u^2} + \frac12\sum_{N=1}^\infty \frac{1}{N^2}\sum_{u=1}^N \frac{(-1)^{u+1}}{u^2} \\ & = \; \frac12\sum_{N=1}^\infty \frac{(-1)^{N+1}}{N^2}\sum_{u=1}^N\frac{1}{u^2} + \frac12\sum_{u=1}^\infty \frac{(-1)^{u+1}}{u^2}\sum_{N=u}^\infty \frac{1}{N^2} \; = \; \frac12\sum_{N=1}^\infty \frac{(-1)^{N+1}}{N^2}\left(\sum_{u=1}^\infty \frac{1}{u^2} + \frac{1}{N^2}\right) \\ & = \; \tfrac1{12}\pi^2\sum_{N=1}^\infty \frac{(-1)^{N+1}}{N^2} + \tfrac12 \sum_{N=1}^\infty \frac{(-1)^{N+1}}{N^4} \; = \; \tfrac1{12}\pi^2 \times \tfrac1{12}\pi^2 + \tfrac12 \times \tfrac{7}{720}\pi^4 \\ & = \; \tfrac{17}{1440}\pi^4 \end{aligned} where the key variable substitution in the third line is N = n + 2 m + 1 N = n + 2m + 1 and u = n + 1 u = n+1 . This makes the answer 17 + 4 + 1440 = 1461 17 + 4 + 1440 = \boxed{1461} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...