A Locus Problem

Algebra Level 4

Find the locus of a complex number z z satisfying 2 z 1 z + i = 2 \left|\dfrac{2z-1}{z+i} \right |=2 ,

where i = 1 i=\sqrt{-1} .

Circle Point Straight line Pair of Straigh lines Ellipse

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mvs Saketh
Feb 19, 2015

Straight forward,

take 2 common in numerator Mod,

to get |z-0.5|=|z-(-i)| which is simply the perpendicular bisector of points (0.5,0) and (0,-1)

Did exactly same.

Gautam Sharma - 6 years, 3 months ago

yeah did the same way

Prakhar Bindal - 5 years, 6 months ago
Niranjan Sai
Mar 12, 2015

It is better to assume z=x+iy and solve the problem them we get the equation 4x+8y+3=0 which is a straight line.

Ya its traditional.you don't have 5 mins to solve a questions as simple.

Spandan Senapati - 4 years, 3 months ago

It's very time consuming then

Nivedit Jain - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...