A log to roll over

Algebra Level 3

log 2 3 ( 1728 ) + log 2 63 5 ( 2016 ) = ? \Large \log_{2\sqrt{3}}(1728) + \log_{2\sqrt[5]{63}}(2016)= \, ?


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

log 2 3 ( 1728 ) = x 2 x 3 x 2 = 1 2 3 = 2 6 3 3 x = 6 \large \log_{2\sqrt{3}}(1728) = x \Longrightarrow 2^{x}3^{\frac{x}{2}} = 12^{3} = 2^{6}3^{3} \Longrightarrow x = 6

by the Fundamental Theorem of Arithmetic, (FTA).

log 2 63 5 ( 2016 ) = y ( 2 3 2 7 5 ) y = 2016 2 y 3 2 y 5 7 y 5 = 2 5 3 2 7 y = 5 \large \log_{2\sqrt[5]{63}}(2016) = y \Longrightarrow (2\sqrt[5]{3^{2}*7})^{y} = 2016 \Longrightarrow 2^{y}3^{\frac{2y}{5}}7^{\frac{y}{5}} = 2^{5}3^{2}7 \Longrightarrow y = 5 ,

again by the FTA. Thus x + y = 6 + 5 = 11 x + y = 6 + 5 = \boxed{11} .

This is an unusual approach. Thanks for sharing!

Pi Han Goh - 5 years, 2 months ago
Rishabh Jain
Mar 28, 2016

Just write it as:

log 4 3 ( 1 2 3 ) + log 32 63 5 ( 2016 ) \Large \log_{\sqrt{4\cdot 3}}(12^3) + \log_{\sqrt[5]{32\cdot 63}}(2016)

( log a 1 p b = p log a b ) a , b > 0 , a 1 , p 0 \color{#D61F06}{(\log_{a^{\frac 1p}} b=p\log_a b)}~~a,b>0,a\neq 1,p\neq 0

2 log 12 ( 1 2 3 ) + 5 log 2016 ( 2016 ) \Large 2\log_{12}(12^3) + 5\log_{2016}(2016)

( log a a c = c ) a , c > 0 , a 1 \color{#D61F06}{(\log_a a^c =c)}~~a,c>0, a\neq 1

= 6 + 5 = 11 =6+5=\boxed{11}

I think a 1 a\,≠\,1 , rather than b 1 b\,≠\,1 .

Aditya Sky - 5 years, 2 months ago

Log in to reply

Yup... Typo

Rishabh Jain - 5 years, 2 months ago
Arjen Vreugdenhil
Mar 31, 2016

= log 1728 log 2 3 + log 2016 log 2 63 5 = 6 log 2 + 3 log 3 log 2 + 1 2 log 3 + 5 log 2 + 2 log 3 + log 7 log 2 + 2 5 log 3 + 1 5 log 7 = 3 ( 2 log 2 + log 3 ) 1 2 ( 2 log 2 + log 3 ) + 5 log 2 + 2 log 3 + log 7 1 5 ( 5 log 2 + 2 log 3 + log 7 ) = 3 1 / 2 + 1 1 / 5 = 6 + 5 = 11 . \dots = \frac{\log 1728}{\log 2\sqrt 3} + \frac{\log 2016}{\log 2\sqrt[5]{63}} \\ = \frac{6\log 2 + 3 \log 3}{\log 2 + \tfrac12\log 3} + \frac{5\log 2 + 2\log 3 + \log 7}{\log 2 + \tfrac25\log 3 + \tfrac15\log 7} \\ = \frac{3(2 \log 2 + \log 3)}{\tfrac12(2\log 2 + \log 3)} + \frac{5\log 2 + 2\log 3 + \log 7}{\tfrac15(5\log 2 + 2\log 3 + \log 7)} \\ = \frac{3}{1/2} + \frac{1}{1/5} = 6 + 5 = \boxed{11}.

Umair Siddiqui
Mar 30, 2016

the question is same as

(log (1728)/log (12^(1/3))) + (log (2016) / log ( 2016^(1/5))

1728 = 12^3

let log 1728= a and log 2016 = b

hence ( 3*a)/(a/2) + (b)/(b/5) = 6 + 5 = 11

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...