A logarithm equation

Algebra Level 2

The value of x \displaystyle{x} that satisfies the equation log 2 ( 2 x 1 + 3 x + 1 ) = 2 x log 2 ( 3 x ) \log_{2}(2^{x-1} + 3^{x+1}) = 2x - \log_{2}(3^x) can be expressed as log a b \displaystyle{\log_{a}b} . What is the value of a + b \displaystyle{a+b} ?

\quad Note : a a and b b are both fractions and their sum is an integer .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Deepanshu Gupta
Nov 5, 2014

log 2 ( 2 x 1 + 3 x + 1 ) + log 2 ( 3 x ) = 2 x \\ \log _{ 2 } (2^{ x-1 }+3^{ x+1 }) + \log _{ 2 } (3^{ x }) = 2x

Now let n = 2 x n={ 2 }^{ x } and let m = 3 x m={ 3 }^{ x } .

Using Properties of logs, we have that

m n + 6 m 2 = 2 n 2 . mn + { 6m }^{ 2 } = 2{ n }^{ 2 }.

Now divide By mn and let m n = t \cfrac { m }{ n } = t .

1 + 6 m n = 2 n m m n = t 6 t 2 + t 2 = 0 t = 1 2 o r t = 2 3 ( rejected because t must be positive ) t = 1 2 x = log 1 2 log 3 2 = log 3 / 2 ( 1 / 2 ) a + b = 1 2 + 3 2 = 2 1 + \cfrac { 6m }{ n } = \cfrac { 2n }{ m } \\ \\ \cfrac { m }{ n } = t\\ \\ { 6 }t^{ 2 } + t - 2 = 0\\ \\ t = \cfrac { 1 }{ 2 } \quad or \quad t =-\frac{2}{ 3} \quad (\text{rejected because } t \text{ must be positive} )\\ \\ \Rightarrow \boxed { t = \cfrac { 1 }{ 2 } } \\ \\ x = \cfrac { \log { \cfrac { 1 }{ 2 } } }{ \log { \cfrac { 3 }{ 2 } } } = \log _{ 3/2 }{ (1/2) } \\ \\ a + b =\cfrac { 1 }{ 2 } +\cfrac { 3 }{ 2 } = 2 .

Great solution, Deepanshu. I kept thinking that a a and b b had to be integers since a + b a + b had to be an integer, so when I found a solution of 1 1 log 2 ( 3 ) \frac{1}{1 - \log_{2}(3)} I couldn't see how to get this in the form log a ( b ) \log_{a}(b) where a a and b b were integers. Then it finally dawned on me that they might not be integers. :)

@Abhishek Singh Great question. One suggestion, though; you will need to specify that a a and b b are both fractions with denominator 2 2 , since otherwise the solution will not be unique. For instance,

log 3 2 ( 1 2 ) = log 9 4 ( 1 4 ) \log_{\frac{3}{2}}(\frac{1}{2}) = \log_{\frac{9}{4}}(\frac{1}{4}) ,

and in the first case we have a + b = 2 a + b = 2 and in the second a + b = 5 2 a + b = \frac{5}{2} .

Brian Charlesworth - 6 years, 7 months ago

Log in to reply

Thanks sir, I'll change the wording .

Abhishek Singh - 6 years, 7 months ago

Thanks Sir :)

Deepanshu Gupta - 6 years, 7 months ago
David Orrell
Dec 31, 2016

log 2 ( 2 x 1 + 3 x + 1 ) = log 2 ( 2 2 x ) log 2 ( 3 x ) = log 2 ( 2 2 x 3 x ) \log_{2}(2^{x-1}+3^{x+1}) = \log_{2}(2^{2x})-\log_{2}(3^{x}) = \log_{2}(\frac{2^{2x}}{3^{x}})

2 x 1 + 3 x + 1 = 2 2 x 3 x 2^{x-1}+3^{x+1} = \frac{2^{2x}}{3^{x}}

2 x 1 3 x + 3 = 2 2 x 3 2 x = ( 2 3 ) 2 x \frac{2^{x-1}}{3^{x}} + 3 = \frac{2^{2x}}{3^{2x}} = (\frac{2}{3})^{2x}

1 2 ( 2 3 ) x + 3 = ( 2 3 ) 2 x \frac{1}{2}(\frac{2}{3})^{x} + 3 = (\frac{2}{3})^{2x}

2 ( 2 3 ) 2 x ( 2 3 ) x 6 = 0 2(\frac{2}{3})^{2x}-(\frac{2}{3})^{x}-6=0

( 2 ( 2 3 ) x + 3 ) ( ( 2 3 ) x 2 ) = 0 (2(\frac{2}{3})^{x}+3)((\frac{2}{3})^{x}-2) = 0

( 2 3 ) x = 2 , 3 2 (\frac{2}{3})^{x} = 2, -\frac{3}{2}

Since a x > 0 x R , a > 0 a^{x} > 0 \quad \forall x \in \mathbb{R}, \quad a > 0 , reject ( 3 2 ) (-\frac{3}{2})\\

( 2 3 ) x = 2 \therefore (\frac{2}{3})^{x} = 2

x = log 2 3 2 x = \log_{\frac{2}{3}}2\\

Observe that log m n = log 1 m n log 1 m m = log 1 m n 1 = log 1 m n = log 1 m 1 n \log_{m}{n} = \frac{\log_{\frac{1}{m}}n}{\log_{\frac{1}{m}}m} = \frac{\log_{\frac{1}{m}}n}{-1} = -\log_{\frac{1}{m}}n = \log_{\frac{1}{m}}\frac{1}{n} . Then

x = log 3 2 1 2 \boxed{x = \log_{\frac{3}{2}}\frac{1}{2}}

a + b = 3 2 + 1 2 = 2 a + b = \frac{3}{2} + \frac{1}{2} = \boxed{2}

Chris Taylor
Mar 30, 2016

Very neat and clear. But I stumbled over the last step. I would find it clearer if you inserted the line

1 2 = ( 3 2 ) x \frac{1}{2} = ( \frac{3}{2} )^{x}

Popular Power
Jun 9, 2019

log 2 2 x 1 + 3 x + 1 = 2 x log 2 3 x \log_{2}{2^{x-1}+3^{x+1}}=2x-\log_{2}{3^x}

Let m = 2 x m=2^x and n = 3 x n=3^x

Simplifying the above expression we get:

m 2 + 3 n = m 2 n ( 3 n + 2 m ) ( 2 n m ) = 0 \dfrac{m}{2}+3n=\dfrac{m^2}{n} \Rightarrow (3n+2m)(2n-m)=0

2 n = m 2 × 3 x = 2 x x = log 3 2 1 2 2n=m \Rightarrow 2\times 3^x=2^x \Rightarrow x=\log_{\dfrac{3}{2}}{\dfrac{1}{2}}

a = 3 2 , b = 1 2 a=\dfrac{3}{2}, b=\dfrac{1}{2}

a + b = 3 2 + 1 2 = 2 a+b=\dfrac{3}{2}+\dfrac{1}{2}=2

Mattia Conti
Mar 4, 2018

log 2 ( 2 x 1 + 3 x + 1 ) = 2 x log 2 ( 3 x ) \log_{2}(2^{x-1} + 3^{x+1}) = 2x - \log_{2}(3^x)

l o g 2 ( 2 x 1 + 3 x + 1 ) = 2 2 x 3 x log_{2}(2^{x-1} + 3^{x+1}) = \frac{2^{2x}}{3^x}

2 x 1 + 3 x + 1 2^{x-1}+3^{x+1} = 2 2 x 3 x \frac{2^{2x}}{3^x}

2 x ( 1 2 2^x(\frac{1}{2} + 3 3 x 2 x \frac{3^x}{2^x} ) = 2 2 x 3 x \frac{2^{2x}}{3^x}

1 2 \frac{1}{2} + 3 3 x 2 x \frac{3^x}{2^x} = 2 x 3 x \frac{2^{x}}{3^x}

1 2 \frac{1}{2} + 3t = 1 t \frac{1}{t}

6 t 2 + t 2 2 t \frac{6t^2 + t - 2}{2t} = 0

t = 1 2 \frac{1}{2}

3 2 x {\frac{3}{2}}^x = 1 2 \frac{1}{2}

x = log 3 2 ( 1 2 \log_{\frac{3}{2}}(\frac{1}{2} ))

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...