A logarithm problem

Algebra Level 3

Let f ( x ) = 1 0 10 x f(x)=10^{10x} , g ( x ) = log 10 ( x 10 ) g(x)=\log_{10}\left(\dfrac{x}{10}\right) , h 1 ( x ) = g ( f ( x ) ) h_1(x)=g(f(x)) , and h n = h 1 ( h n 1 ( x ) ) h_n=h_1\left(h_{n-1}(x)\right) for integers n 2 n\geq 2 . The sum of the digits of h 2011 ( 1 ) h_{2011}(1) is a 5-digit multiple of 173 and can be written in the form 173 Q 173Q . What is the value of Q Q ?


The answer is 93.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

h 1 ( x ) = g ( f ( x ) ) = g ( 1 0 10 x ) = log 10 ( 1 0 10 x 10 ) = log 10 ( 1 0 10 x 1 ) = 10 x 1 h 2 ( x ) = h 1 ( h 1 ( x ) ) = 10 ( 10 x 1 ) 1 = 1 0 2 x 11 = 1 0 2 x 1 0 2 1 9 h 3 ( x ) = 10 ( 1 0 2 x 11 ) 1 = 1 0 3 x 111 = 1 0 3 x 1 0 3 1 9 \begin{aligned} h_1(x) & = g(f(x)) = g \left(10^{10x}\right) =\log_{10} \left(\frac {10^{10x}}{10} \right) = \log_{10} \left(10^{10x-1} \right) = 10x-1 \\ h_2(x) & = h_1(h_1(x)) = 10(10x-1)-1 = 10^2x - 11 = 10^2x - \frac {10^2-1}9 \\ h_3(x) & = 10(10^2x-11)-1 = 10^3x - 111 = 10^3x - \frac {10^3-1}9 \end{aligned}

h n ( x ) = 1 0 n x 1 0 n 1 9 See proof by induction below. h 2011 ( 1 ) = 1 0 2011 1 0 2011 1 9 = 1 000000 000000 Number of 0’s = 2011 111111 111111 Number of 1’s = 2011 = 888888 888888 Number of 8’s = 2010 9 \begin{aligned} \implies h_n (x) & = 10^nx - \frac {10^n - 1}9 & \small \color{#3D99F6} \text{See proof by induction below.} \\ h_{2011} (1) & = 10^{2011} - \frac {10^{2011}-1}9 \\ & = 1\underbrace{000000\cdots 000000}_{\text{Number of 0's = 2011}} - \underbrace{111111\cdots 111111}_{\text{Number of 1's = 2011}} \\ & = \underbrace{888888\cdots 888888}_{\text{Number of 8's = 2010}}9 \end{aligned}

The sum of digits of h 2011 ( 1 ) h_{2011}(1) is 2010 × 8 + 9 = 16089 = 173 × 93 2010\times 8 + 9 = 16089 = 173 \times 93 . Therefore Q = 93 Q=\boxed{93} .


Proof by induction: The claim h n ( x ) = 1 0 n x 1 0 n 1 9 h_n (x) = 10^n x - \dfrac {10^n-1}9 . When n = 1 n=1 , h 1 ( x ) = 1 0 1 x 10 1 9 = 10 x 1 h_1(x) = 10^1x - \dfrac {10-1}9 = 10x - 1 as given. Therefore the claim is true for n = 1 n=1 . Now assuming that it is true for n n , then:

h n + 1 = h 1 ( h n ( x ) ) = 10 ( 1 0 n x 1 0 n 1 9 ) 1 = 1 0 n + 1 x 1 0 n + 1 10 + 9 9 = 1 0 n + 1 x 1 0 n + 1 1 9 \begin{aligned} h_{n+1} & = h_1(h_n(x)) = 10 \left(10^n x - \frac {10^n-1}9\right) - 1 = 10^{n+1}x - \frac {10^{n+1} - 10 + 9}9 = 10^{n+1}x - \frac {10^{n+1} - 1}9 \end{aligned}

Therefore, the claim is true for n + 1 n+1 and hence true for all n 1 n\ge 1 .

X X
Aug 8, 2018

h 1 ( x ) = log 10 ( 1 0 10 x 10 ) = 10 x 1 h_1(x)=\log_{10}\left(\dfrac{10^{10x}}{10}\right)=10x-1 ,so h 1 ( 1 ) = 9 , h 2 ( 1 ) = 89 , h 3 ( 1 ) = 889 , . . . , h n ( 1 ) = 888 8889 Number of 8s = n 1 h_1(1)=9,h_2(1)=89,h_3(1)=889,...,h_n(1)=\underbrace{888 \cdots 8889}_{\text{Number of 8s }= n-1}

The digit sum of h 2011 ( 1 ) h_{2011}(1) is 8 × 2011 + 1 = 173 × 93 8\times2011+1=173\times\boxed{93}

We are given f ( x ) = 1 0 10 x f\left(x\right)=10^{10x} , g ( x ) = log ( x 10 ) g\left(x\right)=\log\left(\frac{x}{10}\right) , h 1 ( x ) = g ( f ( x ) ) = log ( 1 0 10 x 1 ) = 10 x 1 h_1(x) = g(f(x)) = \log(10^{10x - 1}) = 10x - 1 , and h n ( x ) = h 1 ( h n 1 ( x ) ) h_n(x) = h_1(h_{n-1}(x)) .

Looking at the first couple functions in the sequence h n ( x ) h_n(x) :

  • h 1 ( x ) = 10 x 1 h_1(x) = 10x - 1

  • h 2 ( x ) = 10 ( 10 x 1 ) 1 = 100 x 11 h_2(x) = 10(10x - 1) - 1 = 100x - 11

  • h 3 ( x ) = 10 ( 100 x 11 ) 1 = 1000 x 111 h_3(x) = 10(100x - 11) - 1 = 1000x - 111

It is clear that h n ( x ) = 1 0 n x 1 0 n 1 9 h_n(x) = 10^nx - \frac{10^n - 1}{9} . If x = 1 x = 1 , then h n ( 1 ) = 888...9 h_n(1) = 888...9 for n 1 n - 1 occurrences of 8.

The digit sum of h n ( 1 ) h_n(1) is thereby given by s ( n ) = 9 + 8 ( n 1 ) s(n) = 9 + 8(n - 1) . s ( 2011 ) = 9 + 8 2010 = 16089 = 173 93 s(2011) = 9 + 8 * 2010 = 16089 = 173 * 93 . Therefore, Q = 93 \boxed{Q = 93} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...