A logarithmic equation

Algebra Level 4

The sum of all (positive) solutions of the equation

log 16 x + log x 16 = log 512 x + log x 512 \log_{16}x +\log _x 16=\log_{512} x + \log_x {512}

can be written as a b \frac{a}{b} , where a a and b b are coprime positive integers. What are the last three digits of a + b a+b ?


The answer is 161.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

15 solutions

Daniel Whatley
Sep 9, 2013

We write log x 16 \log_x16 as 4 log x 2 4\log_x2 , and log 16 x \log_{16}x as 1 log x 16 = 1 4 log x 2 \frac1{\log_x16} = \frac1{4\log_x2} . Similarly, log x 512 = 9 log x 2 \log_x{512} = 9\log_x2 , and log 512 x = 1 9 log x 2 \log_{512}x = \frac1{9\log_x2} . Hence, 4 log x 2 + 1 4 log x 2 = 9 log x 2 + 1 9 log x 2 ( 1 4 1 9 ) ( 1 log x 2 ) = 5 log x 2 1 36 = ( log x 2 ) 2 ± 1 6 = log x 2. \begin{aligned} 4\log_x2 + \frac1{4\log_x2} &=& 9\log_x2 + \frac1{9\log_x2} \\ \left(\frac14 - \frac19\right)\left(\frac1{\log_x2}\right) &=& 5\log_x2 \\ \frac1{36} &=& (\log_x2)^2 \\ \pm\frac16 &=& \log_x2. \end{aligned} Hence, x = 64 x = 64 or x = 1 64 x = \frac1{64} , and the sum of these is 4097 64 \frac{4097}{64} . We obtain 4097 + 64 = 4161 4097+64 = 4161 , and the last three digits are 161 \boxed{161} .

thanks

Madhukar Thalore - 7 years, 9 months ago

How did you get 4097?????

Tanmay Pradhan - 3 years, 1 month ago
Michael Tang
Sep 9, 2013

Let y = log 2 x . y = \log_2 x. Then y 4 = log 2 x 4 = log 2 x log 2 16 = log 16 x \dfrac{y}{4} = \dfrac{\log_2 x}{4} = \dfrac{\log_2 x}{\log_2 16} = \log_{16} x and y 9 = log 2 x 9 = log 2 x log 2 512 = log 512 x . \dfrac{y}{9} = \dfrac{\log_ 2 x }{9} = \dfrac{\log_2 x}{\log_2 512} = \log_{512} x. In addition, log x 16 = 1 log 16 x = 4 y \log_x 16 = \dfrac{1}{\log_{16} x} = \dfrac{4}{y} and log x 512 = 1 log 512 x = 9 y . \log_x 512 = \dfrac{1}{\log_{512} x} = \dfrac{9}{y}. Therefore, the given equation becomes y 4 + 4 y = y 9 + 9 y . \dfrac{y}{4} + \dfrac{4}{y} = \dfrac{y}{9} + \dfrac{9}{y}. Combining fractions on both sides gives y 2 + 16 4 y = y 2 + 81 9 y , \dfrac{y^2+16}{4y} = \dfrac{y^2+81}{9y}, and cross-multiplying, we have 9 y ( y 2 + 16 ) = 4 y ( y 2 + 81 ) . 9y(y^2+16) = 4y(y^2+81). If y = 0 , y = 0, then x = 2 0 = 1 , x = 2^0 = 1, which is not a valid solution since log x 16 \log_x 16 is not defined if x = 1. x = 1. Thus, we can divide both sides by y y to obtain the following: 9 ( y 2 + 16 ) = 4 ( y 2 + 81 ) 9 y 2 + 144 = 4 y 2 + 324 5 y 2 = 180 y 2 = 36 y = ± 6. \begin{aligned} 9(y^2+16) &= 4(y^2+81) \\ 9y^2+144 &= 4y^2+324 \\ 5y^2 &= 180 \\ y^2 &= 36 \\ y &= \pm 6. \end{aligned} Therefore, either log 2 x = 6 , \log_2 x = 6, so x = 2 6 = 64 , x = 2^6 = 64, or log 2 x = 6 , \log_2 x = -6, so x = 2 6 = 1 64 . x = 2^{-6} = \dfrac{1}{64}. The sum of these two solutions is 64 + 1 64 = 4097 64 , 64 + \dfrac{1}{64} = \dfrac{4097}{64}, and the last three digits of 4097 + 64 = 4161 4097+64 = 4161 are 161 . \boxed{161}.

Although it's pretty much the same solution as everyone else's, this one's really neatly written. Good job, you have my vote!

Ivan Sekovanić - 7 years, 9 months ago
Priyansh Sangule
Sep 8, 2013

Using the identity that -

l o g b a = l o g m a l o g m b log_b a = \frac{ log_m a}{log_m b} ,

Taking the bases as 2 [As we see that 16 16 and 512 512 are powers of 2 2 ] ,

and thus our simplified equation will be -

l o g 2 x l o g 2 16 + l o g 2 16 l o g 2 x = l o g 2 x l o g 2 512 + l o g 2 512 l o g 2 x \frac{log_2 x}{log_2 16} + \frac{log_2 16}{log_2 x} = \frac{log_2 x}{log_2 512} + \frac{log_2 512}{log_2 x}

l o g 2 x 4 + 4 l o g 2 x = l o g 2 x 9 + 9 l o g 2 x \Rightarrow \frac{log_2 x}{4} + \frac{4}{log_2 x} = \frac{log_2 x}{9} + \frac{9}{log_2 x}

l o g 2 x 4 l o g 2 x 9 = 9 l o g 2 x 4 l o g 2 x \Rightarrow \frac{log_2 x}{4} - \frac{log_2 x}{9} = \frac{9}{log_2 x} - \frac{4}{log_2 x}

( l o g 2 x ) ( 1 4 1 9 ) = ( 1 l o g 2 x ) ( 9 4 ) \Rightarrow (log_2 x )(\frac{1}{4} - \frac{1}{9}) = (\frac{1}{log_2 x}) (9-4)

( l o g 2 x ) ( 5 36 ) = ( 5 l o g 2 x ) \Rightarrow (log_2 x)(\frac{5}{36}) =(\frac{5}{log_2 x})

( l o g 2 x ) ( 1 36 ) = ( 1 l o g 2 x ) \Rightarrow (log_2 x)(\frac{1}{36}) =(\frac{1}{log_2 x})

Now by transposing the constant terms to one side ,

( l o g 2 x ) 2 = 36 \Rightarrow (log_2 x)^2 = 36

l o g 2 x = ± 6 \Rightarrow log_2 x = \pm 6

x = 2 ± 6 \Rightarrow x = 2^{\pm 6}

Thus , we get x = 2 6 = 64 x = 2^6 = 64 and x = 2 6 = 1 64 x = 2^{-6} = \frac{1}{64}

Thus the sum of values of x x

= 64 + 1 64 = 4097 64 = 64 + \frac{1}{64} = \frac{4097}{64}

Thus a + b = 4097 + 64 = 4161 a + b = 4097 + 64 = 4161

And hence , last three digits are 161 161

Cheers!

Russell Few
Sep 8, 2013

We let l o g 16 x = k log_{16} x=k . Then l o g x 16 = 1 k log_x 16=\frac{1}{k} . Also, since l o g 512 16 = l o g 2 9 2 4 = 4 9 log_{512} 16=log_{2^9} 2^4=\frac{4}{9} , l o g 512 x = ( l o g 16 x ) ( l o g 512 16 ) = ( k ) ( 4 9 ) = ( 4 k 9 ) log_{512} x=(log_{16} x)(log_{512} 16)=(k)(\frac{4}{9})=(\frac{4k}{9}) . Hence l o g x 512 = 9 4 k log_x 512=\frac{9}{4k} .

Now we solve the equation. In terms of k k , the equation becomes k + 1 k = 4 k 9 + 9 4 k k+\frac{1}{k}=\frac{4k}{9}+\frac{9}{4k} . Thus k 4 k 9 = 9 4 k 1 k k-\frac{4k}{9}=\frac{9}{4k}-\frac{1}{k} . Hence 5 k 9 = 5 k 4 k 2 \frac{5k}{9}=\frac{5k}{4k^2} . Thus 4 k 2 = 9 4k^2=9 , and k 2 = 9 4 k^2=\frac{9}{4} . k = ± 3 2 k=\pm \frac{3}{2} .

If k = 3 2 k=\frac{3}{2} , then x = 1 6 3 2 = 64 x=16^{\frac{3}{2}}=64 . If k = 3 2 k=-\frac{3}{2} , x = 1 1 6 3 2 = 1 64 x=\frac{1}{16^{\frac{3}{2}}}=\frac{1}{64} .

Thus the sum of all positive solutions is 1 64 + 64 = 6 4 2 + 1 64 = 4097 64 \frac{1}{64}+64=\frac{64^2+1}{64}=\frac{4097}{64} .

Hence a = 4097 a=4097 and b = 64 b=64 . a + b = 4161 a+b=4161 , so the last 3 3 digits of a + b a+b is 161 \boxed{161} .

log 16 x + log x 16 = log 512 x + log x 512 log 2 x log 2 16 + log 2 16 log 2 x = log 2 x log 2 512 + log 2 512 log 2 x log 2 x 4 + 4 log 2 x = log 2 x 9 + 9 log 2 x ( 1 4 1 9 ) log 2 x = 9 4 log 2 x ( 5 36 ) log 2 x = 5 log 2 x ( log 2 x ) 2 = 36 log 2 x = ± 6 x = { 2 6 = 64 2 6 = 1 64 64 + 1 64 = 4097 64 \begin{aligned} \log_{16} x + \log_x 16 & = \log_{512} x + \log_x 512 \\ \frac{\log_2 x}{\log_2 16} + \frac{\log_2 16}{\log_2 x} & = \frac{\log_2 x}{\log_2 512} + \frac{\log_2 512}{\log_2 x} \\ \frac{\log_2 x}{4} + \frac{4}{\log_2 x} & = \frac{\log_2 x}{9} + \frac{9}{\log_2 x} \\ \left(\frac{1}{4} - \frac{1}{9} \right) \log_2 x & = \frac{9-4}{\log_2 x} \\ \left(\frac{5}{36} \right) \log_2 x & = \frac{5}{\log_2 x} \\ \left(\log_2 x\right)^2 & = 36 \\ \Rightarrow \log_2 x & = \pm 6 \\ x & = \begin{cases} 2^6 = 64 \\ 2^{-6} = \frac{1}{64} \end{cases} \\ 64 + \frac{1}{64} & = \frac{4097}{64} \end{aligned}

a + b = 4097 + 64 = 4 161 \Rightarrow a + b = 4097+64 = 4\boxed{161}

David Nolasco
Sep 10, 2013

We may rewrite the equation this way:

log 16 x log 512 x = log x 512 log x 16 \log_{16} x -\log_{512} x = \log_x 512 - \log_x 16

Note that the RHS is equal to log x 512 16 = log x 32 \log_x \frac{512}{16} = \log_x 32

We can change the base of every expression on the LHS to 16 16

We have the LHS equal to log 16 x log 16 x log 16 512 \log_{16} x -\frac{\log_{16} x}{\log_{16} 512}

Note that log 16 512 = 9 4 \log_{16} 512 = \frac{9}{4} . We have the equation:

log 16 x 4 9 log 16 x = log x 32 \log_{16} x - \frac{4}{9}\log_{16} x = \log_x 32 or 5 9 log 16 x = log x 32 \frac{5}{9}\log_{16} x = \log_x 32

We may change the base of the RHS to 16 16 and thus:

log x 32 = log 16 32 log 16 x \log_x 32 = \frac{\log_{16} 32}{\log_{16} x} . We now have the equation equal to:

5 9 ( log 16 x ) 2 = log 16 32 \frac{5}{9}(\log_{16} x)^{2} = \log_{16} 32 , but log 16 32 = 5 4 \log_{16} 32 =\frac{5}{4}

Therefore: ( log 16 x ) 2 = 9 4 log 16 x = ± 3 2 (\log_{16} x)^{2} = \frac{9}{4} \Rightarrow \log_{16} x = \pm\frac{3}{2}

x = 4 ± 3 x = 4^{\pm 3} so the sum of all solutions is 64 + 1 64 = 4097 64 64 + \frac{1}{64} = \frac{4097}{64}

a + b = 4161 a + b = 4161 , 161 161 is the answer.

l o g 16 x + l o g x 16 = l o g 512 x + l o g x 512 log_{16}x + log_{x}16 = log_{512}x + log_{x}512

l o g 2 x l o g 2 2 4 + l o g 2 2 4 l o g 2 x = l o g 2 x l o g 2 2 9 + l o g 2 2 9 l o g 2 x \frac{log_{2}x}{log_{2}2^{4}} + \frac{log_{2}2^{4}}{log_{2}x} = \frac{log_{2}x}{log_{2}2^{9}} + \frac{log_{2}2^{9}}{log_{2}x}

l o g 2 x 4 + 4 l o g 2 x = l o g 2 x 9 + 9 l o g 2 x \frac{log_{2}x}{4} + \frac{4}{log_{2}x} = \frac{log_{2}x}{9} + \frac{9}{log_{2}x}

l o g 2 x 4 l o g 2 x 9 = 9 l o g 2 x 4 l o g 2 x \frac{log_{2}x}{4} - \frac{log_{2}x}{9} = \frac{9}{log_{2}x} - \frac{4}{log_{2}x}

5 × l o g 2 x 36 = 5 l o g 2 x \frac{5 \times log_{2}x}{36} = \frac{5}{log_{2}x}

( l o g 2 x ) 2 = 36 (log_{2}x)^{2} = 36

l o g 2 x = 6 log_{2}x = 6 or l o g 2 x = 6 log_{2}x = -6

x = 2 6 x = 2^{6} or x = 2 6 x = 2^{-6}

64 + 1 64 = 4096 + 1 64 = 4097 64 64 + \frac{1}{64} = \frac{4096 + 1}{64} = \frac{4097}{64}

So a = 4097 a = 4097 and b = 64 b = 64

a + b = 4161 a+b = 4161

And the last three digits are 161 161

Ahaan Rungta
Sep 12, 2013

log 16 x + log x 16 = log 512 x + log x 512. \log_{16} x + \log_x 16 = \log_{512} x + \log_x 512. Using the change-of-base rule, we have log 2 x log 2 16 + log 2 16 log 2 x = log 2 x log 2 512 + log 2 512 log 2 x , \dfrac {\log_2 x}{\log_2 16} + \dfrac {\log_2 16}{\log_2 x} = \dfrac {\log_2 x}{\log_2 512} + \dfrac {\log_2 512}{\log_2 x}, so log 2 x 4 + 4 log 2 x = log 2 x 9 + 9 log 2 x . \dfrac {\log_2 x}{4} + \dfrac {4}{\log_2 x} = \dfrac {\log_2 x}{9} + \dfrac {9}{\log_2 x}. Simplifying, we get 5 36 log 2 x = 5 log 2 x ( log 2 x ) 2 = 36 \dfrac {5}{36} \log_2 x = \dfrac {5}{\log_2 x} \implies \left( \log_2 x \right)^2 = 36 .

log 2 x = ± 6 x = 2 ± 6 \implies \log_2 x = \pm 6 \implies x = 2^{\pm 6} .

x { 64 , 1 64 } \implies x \in \left\{ 64, \dfrac {1}{64} \right\} .

x = 64 + 1 64 = 4097 64 \implies \displaystyle\sum x = 64 + \dfrac {1}{64} = \dfrac {4097}{64} , so our answer is ( 4097 + 64 ) m o d 1000 4161 m o d 100 = 161 (4097+64) \bmod 1000 \equiv 4161 \bmod 100 = \boxed {161} .

Let log 2 x = t \log_2 x = t then we can write the equation as: t / 4 + 4 / t = t / 9 + 9 / t t/4 + 4/t = t/9 + 9/t t 2 = 36 t^2 = 36 So we have t = 6 t = 6 or t = 6 t = -6 which means x = 64 x = 64 or x = 1 / 64 x = 1/64

Saad Haider
Sep 9, 2013

There are certain laws of logarithms required for this question. I shall list them below.

log a b n = n log a b \log _ab^{n} = n\log _ab

log a a = 1 \log_aa = 1

log a b = log c b log c a \log _ab = \frac{\log _cb}{\log _ca} where c can be any number whatsoever. In this case we will chose c = 2 for convenience as all the numbers provided are powers of 2

Now we are set

log 16 x + log x 16 = log 512 x + log x 512 \log _{16}x + \log _{x}16 = \log_{512}x+\log _{x}512

log 2 x log 2 16 + log 2 16 log 2 x = log 2 x log 2 512 + log 2 512 log 2 x \frac{\log_2x}{\log_216} + \frac{\log_216}{\log_2x} = \frac{\log_2x}{\log_2512} + \frac{\log_2512}{\log_2x}

note that log 2 16 = log 2 2 4 = 4 log 2 2 = 4 \log_216 = \log_22^{4} = 4\log_22 = 4 Similarly, log 2 512 = 9 \log_2512 = 9

log 2 x 4 + 4 log 2 x = log 2 x 9 + 9 log 2 x \frac{\log_2x}{4}+ \frac{4}{\log_2x} = \frac{\log_2x}{9} + \frac{9}{\log_2x}

Multiplying throughout by 36 log 2 x 36\log_2x gives us

9 ( log 2 x ) 2 + 144 = 4 ( log 2 x ) 2 + 324 9(\log_2x)^{2}+ 144 = 4(\log_2x)^{2} + 324

let y = log 2 x y = \log_2x

9 y 2 + 144 = 4 y 2 + 324 9y^{2}+144 = 4y^{2}+324

5 y 2 = 180 5y^{2}=180

y = ± 36 = ± 6 y = \pm\sqrt{36} = \pm 6

log 2 x = ± 6 \log_2x = \pm 6

log 2 x = 6 \log_2x = 6 or log 2 x = 6 \log_2x = -6

x = 2 6 = 64 x = 2^{6} = 64 or x = 2 6 = 1 64 x = 2^{-6} = \frac{1}{64}

the sum of all the possible values of x gives us 64 + 1 64 = 4097 64 64+\frac{1}{64} = \frac{4097}{64}

4097 + 64 = 4161 4097+64 = 4161\Rightarrow the last 3 digits are 161 161

Geoffrey Mooney
Sep 9, 2013

log 16 x + log x 16 = log 512 x + log x 512 \log_{16} x + \log_{x} 16 = \log_{512} x + \log_{x} 512

log x log 16 + log 16 log x = log x log 512 + log 512 log x \frac{\log x}{\log 16} + \frac{\log 16}{\log x} = \frac{\log x}{\log 512} + \frac{\log 512}{\log x}

log x log 2 4 + log 2 4 log x = log x log 2 9 + log 2 9 log x \frac{\log x}{\log 2^{4}} + \frac{\log 2^{4}}{\log x} = \frac{\log x}{\log 2^{9}} + \frac{\log 2^{9}}{\log x}

log x 4 log 2 + 4 log 2 log x = log x 9 log 2 + 9 log 2 log x \frac{\log x}{4 \log 2} + \frac{4 \log 2}{\log x} = \frac{\log x}{9 \log 2} + \frac{9 \log 2}{\log x}

log x 4 log 2 log x 9 log 2 = 5 log 2 log x \frac{\log x}{4 \log 2} - \frac{\log x}{9 \log 2} = \frac{5 \log 2}{\log x}

9 log x 36 log 2 4 log x 36 log 2 = 5 log 2 log x \frac{9 \log x}{36 \log 2} - \frac{4 \log x}{36 \log 2} = \frac{5 \log 2}{\log x}

5 log x 36 log 2 = 5 log 2 log x \frac{5 \log x}{36 \log 2} = \frac{5 \log 2}{\log x}

log x 36 log 2 = log 2 log x \frac{\log x}{36 \log 2} = \frac{\log 2}{\log x}

( log x ) 2 = 36 ( log 2 ) 2 (\log x)^{2} = 36(\log 2)^{2}

log x = ± 6 log 2 \log x = ±6 \log 2

log x = log 2 6 \log x = \log 2^{-6} or log x = log 2 6 \log x = \log 2^{6}

log x = log 1 64 \log x = \log \frac{1}{64} or log x = log 64 \log x = \log 64

x = 1 64 x = \frac{1}{64} or x = 64 x = 64

The sum of solutions is 1 64 + 64 = 4097 64 \frac{1}{64} + 64 = \frac{4097}{64} . Let a = 4097 a = 4097 and b = 64 b = 64 so that a + b = 4161 161 a + b = 4161 ≡ 161 mod 1000 1000 .

Anjum Naseer
Sep 9, 2013

convert everything to log 2 \log_2 to get: log 2 x log 2 16 + log 2 16 log 2 x = log 2 x log 2 512 + log 2 512 log 2 x \frac{\log_2{x}}{\log_2{16}}+\frac{\log_2{16}}{\log_2{x}}=\frac{\log_2{x}}{\log_2{512}}+\frac{\log_2{512}}{\log_2{x}} log 2 x 4 + 4 log 2 x = log 2 x 9 + 9 log 2 x \frac{\log_2{x}}{4}+\frac{4}{\log_2{x}}=\frac{\log_2{x}}{9}+\frac{9}{\log_2{x}} Then let y = log 2 x y=\log_2{x} which means x = 2 y x=2^{y} to get: y 4 + 4 y = y 9 + 9 y \frac{y}{4}+\frac{4}{y}=\frac{y}{9}+\frac{9}{y} 9 y 2 + 4 × 36 = 4 y 2 + 9 × 36 9y^2+4\times36=4y^2+9\times36 5 y 2 = 5 × 36 5y^2=5\times36 y 2 = 36 y^2=36 y = ± 6 y=\pm6 Therefore, x = 2 6 x=2^{6} or x = 2 6 x=2^{-6} which means the sum of these solutions is 2 6 + 2 6 = 4097 64 = a b 2^{6}+2^{-6}=\frac{4097}{64}=\frac{a}{b} .

Therefore, a + b = 4097 + 64 = 4161 a+b=4097+64=4161 and the last 3 digit are 161.

Note that 16 = 2^4 and 512 = 2^9. For convenience let X denote log x to the base 2. Given equation rewritten in terms of X becomes X/4 + 4/X = X/9 + 9/X. By inspection x = 1 (X=0) cannot be a solution. On multiplying every term by 36 X, we get 9X^2 + 144 = 4X^2 + 324, 5X^2 = 180, X^2 = 36, X = 6 or - 6, x = 64 or 1/64 Sum of the solutions is 4097/64 and 4097+ 64 being 4161. Hence answer is 161.

Ivan Sekovanić
Sep 9, 2013

To begin with, note that for any real values of p p and q q , log q p = log m p log m q \log_{q}p=\frac{\log_{m}p}{\log_{m}q} where m m is also any real number, which in this solution will be 10 10 .

Therefore

log 16 x + log x 16 = log 512 x + log x 512 \log_{16}x+\log_{x}16=\log_{512}x+\log_{x}512 \Rightarrow

lg x lg 16 + lg 16 lg x = lg x lg 512 + lg 512 lg x lg 2 x + lg 2 16 lg 16 lg x = lg 2 x + lg 2 512 lg 512 lg x \Rightarrow \frac{\lg x}{\lg16}+\frac{\lg16}{\lg x}=\frac{\lg x}{\lg512}+\frac{\lg512}{\lg x}\Rightarrow \frac{\lg^{2}x+\lg^{2}16}{\lg16\lg x}=\frac{\lg^{2}x+\lg^{2}512}{\lg512\lg x}

Now, using the fact that log m n = n log m \log m^{n}=n\log m , 16 = 2 4 16=2^{4} and 512 = 2 9 512=2^{9} , we may conclude

lg 2 x + lg 2 16 lg 16 lg x = lg 2 x + lg 2 512 lg 512 lg x lg 2 x + lg 2 2 4 lg 2 4 lg x = lg 2 x + lg 2 2 9 lg 2 9 lg x \frac{\lg^{2}x+\lg^{2}16}{\lg16\lg x}=\frac{\lg^{2}x+\lg^{2}512}{\lg512\lg x} \Rightarrow \frac{\lg^{2}x+\lg^{2}2^{4}}{\lg2^{4}\lg x}=\frac{\lg^{2}x+\lg^{2}2^{9}}{\lg2^{9}\lg x}\Rightarrow lg 2 x + 16 lg 2 2 4 lg 2 lg x = lg 2 x + 81 lg 2 2 9 lg 2 lg x lg 2 x + 16 lg 2 2 lg 2 x + 81 lg 2 2 = 4 9 \Rightarrow \frac{\lg^{2}x+16\lg^{2}2}{4\lg2\lg x}=\frac{\lg^{2}x+81\lg^{2}2}{9\lg2\lg x}\Rightarrow \frac{\lg^{2}x+16\lg^{2}2}{\lg^{2}x+81\lg^{2}2}=\frac{4}{9}\Rightarrow

9 lg 2 x + 144 lg 2 2 = 4 lg 2 x + 324 l g 2 2 5 lg 2 x = 180 lg 2 2 \Rightarrow 9\lg^{2}x+144\lg^{2}2=4\lg^{2}x+324lg^{2}2\Rightarrow 5\lg^{2}x=180\lg^{2}2\Rightarrow

l g 2 x = 36 lg 2 2 lg 2 x = lg 2 2 6 \Rightarrow lg^{2}x=36\lg^{2}2 \Rightarrow \lg^{2}x=\lg^{2}2^{6}\Rightarrow

lg 2 x lg 2 2 6 = 0 ( lg x lg 2 6 ) ( lg x + lg 2 6 ) = 0 \Rightarrow \lg^{2}x-\lg^{2}2^{6}=0\Rightarrow (\lg x-\lg2^{6})(\lg x+\lg2^{6})=0 .

From this, we may derive 2 2 separate cases:

Case I

lg x lg 2 6 = 0 lg x = lg 2 6 x 1 = 2 6 \lg x-\lg2^{6}=0\Rightarrow \lg x=\lg2^{6}\Rightarrow x_{1}=2^{6}

Case II

lg x + lg 2 6 = 0 lg x = lg 2 6 lg x = lg 2 6 x 2 = 2 6 \lg x+\lg2^{6}=0\Rightarrow \lg x=-\lg2^{6}\Rightarrow \lg x=\lg2^{-6}\Rightarrow x_{2}=2^{-6}

Thus, the sum of all the positive solutions equals

x 1 + x 2 = 2 6 + 1 2 6 = 2 12 + 1 2 6 = 4097 64 x_{1}+x_{2}=2^{6}+\frac{1}{2^{6}}=\frac{2^{12}+1}{2^{6}}=\frac{4097}{64} .

Consequently, a b = 4097 64 a + b = 4161 \frac{a}{b}=\frac{4097}{64}\Rightarrow a+b=4161 , meaning the answer is 161 161 .

Sachetan Debray
Jan 20, 2019

Let log2x=m. Then log16x= m/4 And logx16 is its reciprocal, i.e. 4/m. Similarly, log512x=m/9 and logx512=9/m. So the equation can be rewritten as m/4 + 4/m=m/9+9/m. 5m/36=5/m. m^2=36. m=+6, -6. 2^6=64=x. And 2^ (1/6) = 1/64=x. Adding both together, we obtain the sum of all possible values of x as 64+1/64, or 4097/64. Thus a=4097 and b=64. Therefore a + b = 4161. Last 3 digits of (a + b) are 161.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...