A Logarithmic Expression

Algebra Level 1

Evaluate:

5 log 2 + 3 2 log 25 + 1 2 log 49 log 28 \large \color{#456461}5\log 2 + \color{#D61F06}\dfrac{3}{2} \log 25 +\color{#3D99F6} \dfrac{1}{2} \log 49 - \color{#69047E}\log 28

Details & Assumptions:

All the logarithms are in base 10 10 .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anuj Shikarkhane
Apr 11, 2017

Applying laws of logarithms,

5 log 2 + 3 2 log 25 + 1 2 log 49 log 28 5\log2 + \dfrac{3}{2}\log25 + \dfrac{1}{2}\log49 - \log28

= log 2 5 + log 2 5 3 2 + log 4 9 1 2 log 28 \log 2^5 + \log 25^{\frac{3}{2}} + \log 49^{\frac{1}{2}} - \log 28

= log 32 + log 125 + log 7 log 28 \log 32 + \log 125 + \log 7 -\log28

= log 32 × 125 × 7 28 \log\dfrac{32\times125\times7}{28}

= log 1000 \log 1000

= log 10 1000 \log_{10}1000

= 3 \boxed{3}

Chew-Seong Cheong
Apr 13, 2017

x = 5 log 2 + 3 2 log 25 + 1 2 log 49 log 28 = log ( 2 5 × 2 5 3 2 × 4 9 1 2 28 ) = log ( 2 5 × 5 2 × 3 2 × 7 2 × 1 2 2 2 × 7 ) = log ( 2 5 3 × 5 3 × 7 2 2 × 7 ) = log ( 1 0 3 ) = 3 \large \begin{aligned} x & = 5 \log 2 + \frac 32 \log 25 + \frac 12 \log 49 - \log 28 \\ & = \log \left(\frac {2^5 \times 25^\frac 32 \times 49^\frac 12}{28} \right) \\ & = \log \left(\frac {2^5 \times 5^{\cancel 2 \times \frac 3{\cancel 2}} \times 7^{\cancel 2 \times \frac 1{\cancel 2}}}{2^2 \times 7} \right) \\ & = \log \left(\frac {2^{\cancel 53} \times 5^3 \times \cancel 7}{\cancel {2^2} \times \cancel 7} \right) \\ & = \log \left(10^3 \right) \\ & = \boxed{3} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...