A geometry problem by Waxim Channa

Geometry Level 1

Tan(1°)Tan(5°)×Tan(15°)×Tan(75°)×Tan(85°)×Tan(89°) = ?


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

We have:

tan 1 = cot 8 9 = 1 tan 8 9 tan 1 tan 8 9 = 1 \tan1^{\circ}=\cot89^{\circ}=\dfrac{1}{\tan89^{\circ}}\Rightarrow \tan1^{\circ}\tan89^{\circ}=1

tan 5 = cot 8 5 = 1 tan 8 5 tan 5 tan 8 5 = 1 \tan5^{\circ}=\cot85^{\circ}=\dfrac{1}{\tan85^{\circ}}\Rightarrow \tan5^{\circ}\tan85^{\circ}=1

tan 1 5 = cot 7 5 = 1 tan 7 5 tan 1 5 tan 7 5 = 1 \tan15^{\circ}=\cot75^{\circ}=\dfrac{1}{\tan75^{\circ}}\Rightarrow \tan15^{\circ}\tan75^{\circ}=1

So, tan 1 tan 5 tan 1 5 tan 7 5 tan 8 5 tan 8 9 = 1 \tan1^{\circ}\tan5^{\circ}\tan15^{\circ}\tan75^{\circ}\tan85^{\circ}\tan89^{\circ}=\boxed{1}

since,

tan (90-x) =1/tanx

..therefore, tan 89 =tan (90-1) =1/tan 1

tan _ 85 =tan (90-5) =1/tan 5 _

tan 75 =tan (90-15) =1/tan 15

so that, (Tan1 × \times tan5 × \times tan15 × \times tan75 × \times tan85 × \times tan89) =

(Tan1 × \times tan5 × \times tan15 x 1 t a n 15 \frac{1}{tan15} x 1 t a n 5 \frac{1}{tan5} x 1 t a n 15 \frac{1}{tan15} =

1 \boxed{1}

There is no tan89° term in the question

Couple the terms which give a sum of 90 degrees. So, let us consider the first pair: tan(1°)*tan(89°)

We know that tan(90°)=(tan(1°)+tan(89°)) / (1-tan(1°) * tan(89°))

The denominator must be zero, hence tan(1°) * tan(89°) is 1.

Similarly for the pairs: tan(5°) * tan(85°) and tan(15°) * tan(75°).

So, we effectively get 1 * 1 * 1, hence the answer is 1.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...