A Long Equation III

Algebra Level 2

1 × 2 + 2 × 3 + 3 × 4 + + 100 × 101 = ? 1\times 2+2\times 3+3\times 4+\cdots +100\times 101=?


The answer is 343400.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Edward Christian
Aug 10, 2019

Chew-Seong Cheong’s solution is good, but I think there’s an interesting approach as follows, 1 × 2 = 1 3 × ( 1 × 2 × 3 0 × 1 × 2 ) 2 × 3 = 1 3 × ( 2 × 3 × 4 1 × 2 × 3 ) 3 × 4 = 1 3 × ( 3 × 4 × 5 2 × 3 × 4 ) \begin{aligned} \because 1\times 2 &=\dfrac{1}{3}\times \left( 1\times 2\times 3-0\times 1\times 2 \right) \\ 2\times 3 &=\dfrac{1}{3}\times \left(2\times 3\times 4 - 1 \times 2 \times 3 \right) \\ 3\times 4 &=\dfrac{1}{3}\times \left(3\times 4\times 5-2\times 3\times 4\right) \\ \end{aligned} 1 × 2 + 2 × 3 + 3 × 4 = 1 3 × 3 × 4 × 5 = 20 \therefore 1\times 2+2\times 3+3\times 4=\dfrac{1}{3}\times 3\times 4\times 5=20 \cdots \cdots \cdots \cdots S = 1 3 × ( 1 × 2 × 3 0 × 1 × 2 ) + 1 3 × ( 2 × 3 × 4 1 × 2 × 3 ) + + 1 3 × ( 100 × 101 × 102 99 × 100 × 101 ) = 1 3 × ( 100 × 101 × 102 0 ) = 343400 \begin{aligned} S &=\dfrac{1}{3}\times (1\times 2\times 3-0\times 1\times 2)+\dfrac{1}{3}\times (2\times 3\times 4-1\times 2\times 3)+\cdots +\dfrac{1}{3}\times (100\times 101\times 102-99\times 100\times 101) \\ &=\dfrac{1}{3}\times (100\times 101\times 102-0) \\ &=343400 \end{aligned}

Chew-Seong Cheong
Aug 10, 2019

S n = 1 × 2 + 2 × 3 + 3 × 4 + + n ( n + 1 ) = k = 1 100 k ( k + 1 ) = k = 1 100 k 2 + k = 1 100 k = n ( n + 1 ) ( 2 n + 1 ) 6 + n ( n + 1 ) 2 = n ( n + 1 ) ( 2 n + 1 + 3 ) 6 = n ( n + 1 ) ( n + 2 ) 3 \begin{aligned} S_n & = 1 \times 2 + 2 \times 3 + 3 \times 4 + \cdots + n(n+1) \\ & = \sum_{k=1}^{100} k(k+1) \\ & = \sum_{k=1}^{100} k^2 + \sum_{k=1}^{100} k \\ & = \frac {n(n+1)(2n+1)}6 + \frac {n(n+1)}2 \\ & = \frac {n(n+1)(2n+1+3)}6 \\ & = \frac {n(n+1)(n+2)}3 \end{aligned}

Therefore S 100 = 100 ( 101 ) ( 102 ) 3 = 343400 S_{100} = \dfrac {100(101)(102)}3 = \boxed {343400} .

This is a direct derivation of Chew-Seong Cheong's formula from first principles. I learned how to do this by myself and on my own to eliminate busywork when I was about the author's age. They are called finite forward differences:

2 , 8 , 20 , 40 , 70 , 112 original function values 6 , 12 , 20 , 30 , 42 first differences 6 , 8 , 10 , 12 second differences 2 , 2 , 2 third differences \begin{array}{|c|l|} \hline 2,8,20,40,70,112 & \text{original function values} \\ \hline 6,12,20,30,42 & \text{first differences} \\ \hline 6,8,10,12 & \text{second differences} \\ \hline 2,2,2 & \text{third differences} \\ \hline \end{array}

Here are the finite difference polynomials:

0 1 1 n 1 2 1 2 ( n 2 ) ( n 1 ) 3 1 6 ( n 3 ) ( n 2 ) ( n 1 ) 4 1 24 ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) 5 1 120 ( n 5 ) ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) 6 1 720 ( n 6 ) ( n 5 ) ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) 7 ( n 7 ) ( n 6 ) ( n 5 ) ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) 5040 8 ( n 8 ) ( n 7 ) ( n 6 ) ( n 5 ) ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) 40320 9 ( n 9 ) ( n 8 ) ( n 7 ) ( n 6 ) ( n 5 ) ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) 362880 10 ( n 10 ) ( n 9 ) ( n 8 ) ( n 7 ) ( n 6 ) ( n 5 ) ( n 4 ) ( n 3 ) ( n 2 ) ( n 1 ) 3628800 \begin{array}{rl} 0 & 1 \\ 1 & n-1 \\ 2 & \frac{1}{2} (n-2) (n-1) \\ 3 & \frac{1}{6} (n-3) (n-2) (n-1) \\ 4 & \frac{1}{24} (n-4) (n-3) (n-2) (n-1) \\ 5 & \frac{1}{120} (n-5) (n-4) (n-3) (n-2) (n-1) \\ 6 & \frac{1}{720} (n-6) (n-5) (n-4) (n-3) (n-2) (n-1) \\ 7 & \frac{(n-7) (n-6) (n-5) (n-4) (n-3) (n-2) (n-1)}{5040} \\ 8 & \frac{(n-8) (n-7) (n-6) (n-5) (n-4) (n-3) (n-2) (n-1)}{40320} \\ 9 & \frac{(n-9) (n-8) (n-7) (n-6) (n-5) (n-4) (n-3) (n-2) (n-1)}{362880} \\ 10 & \frac{(n-10) (n-9) (n-8) (n-7) (n-6) (n-5) (n-4) (n-3) (n-2) (n-1)}{3628800} \\ \end{array}

Using the differences down the left edge of the differences triangle:

2 ( 1 ) + 6 ( n 1 ) + 6 ( 1 2 ( n 2 ) ( n 1 ) ) + 2 ( 1 6 ( n 3 ) ( n 2 ) ( n 1 ) ) \bm{2}(1)+\bm{6}(n-1)+\bm{6}(\frac12(n-2)(n-1))+\bm{2}(\frac16(n-3)(n-2)(n-1))

Which simplifies to:

1 3 n ( n + 1 ) ( n + 2 ) \frac{1}{3} n (n+1) (n+2)

Evaluating that expression at n = 100 n=100 gives 100 × 101 × 102 3 343400 \frac{100\times 101\times 102}{3} \Rightarrow 343400 .

This procedure, written as a Wolfram Mathematica expression, is:

generator = Function [ { diffs , start , step } , FullSimplify [ Evaluate [ Expand [ i = 0 Length [ diffs ] 1 diffs [ [ i + 1 ] ] j = 0 i 1 ( #1 start step j ) i ! ] ] ] & ] ; \text{generator}=\text{Function}[\{\text{diffs},\text{start},\text{step}\}, \\ \text{FullSimplify}\left[\text{Evaluate}\left[\text{Expand}\left[\sum _{i=0}^{\text{Length}[\text{diffs}]-1} \frac{\text{diffs}[[i+1]] \prod _{j=0}^{i-1} \left(\frac{\text{\#1}-\text{start}}{\text{step}}-j\right)}{i!}\right]\right]\right]\& ];

Allen Allen
Aug 12, 2019

1×2+2×3+3×4+......+99×100+100×101 =2(1+3)+4(3+5)+6(5+7)+......+100(99+101) =2×4+2×2×2×4+2×3×3×4+......+2×50×4×50 =8+8×2²+8×3²+......+8×50² =8(1+2²+3²+......+50²) =8×42925 =343400

Using identities: (n+1)³=n³+3n²+3n+1 → (n+1)³-n³=3n²+3n+1

n³-(n-1)³=3(n-1)²+3(n-1)+1 ......

3³-2³=3×(2²)+3×2+1

2³-1³=3×(1²)+3×1+1.

If I add these n sides of this equation, To:(n+1)³-1=3(1²+2²+3²+....+n²)+3(1+2+3+...+n)+n,

∵1+2+3+...+n=(n+1)n/2

∴n³+3n²+3n=3(1²+2²+3²+....+n²)+3(n+1)n/2+n

∴ 1²+2²+3²+....+n²=n(n+1)(2n+1)/6

then 50×51×101÷6=42925

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...