1 × 2 + 2 × 3 + 3 × 4 + ⋯ + 1 0 0 × 1 0 1 = ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
S n = 1 × 2 + 2 × 3 + 3 × 4 + ⋯ + n ( n + 1 ) = k = 1 ∑ 1 0 0 k ( k + 1 ) = k = 1 ∑ 1 0 0 k 2 + k = 1 ∑ 1 0 0 k = 6 n ( n + 1 ) ( 2 n + 1 ) + 2 n ( n + 1 ) = 6 n ( n + 1 ) ( 2 n + 1 + 3 ) = 3 n ( n + 1 ) ( n + 2 )
Therefore S 1 0 0 = 3 1 0 0 ( 1 0 1 ) ( 1 0 2 ) = 3 4 3 4 0 0 .
This is a direct derivation of Chew-Seong Cheong's formula from first principles. I learned how to do this by myself and on my own to eliminate busywork when I was about the author's age. They are called finite forward differences:
2 , 8 , 2 0 , 4 0 , 7 0 , 1 1 2 6 , 1 2 , 2 0 , 3 0 , 4 2 6 , 8 , 1 0 , 1 2 2 , 2 , 2 original function values first differences second differences third differences
Here are the finite difference polynomials:
0 1 2 3 4 5 6 7 8 9 1 0 1 n − 1 2 1 ( n − 2 ) ( n − 1 ) 6 1 ( n − 3 ) ( n − 2 ) ( n − 1 ) 2 4 1 ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) 1 2 0 1 ( n − 5 ) ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) 7 2 0 1 ( n − 6 ) ( n − 5 ) ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) 5 0 4 0 ( n − 7 ) ( n − 6 ) ( n − 5 ) ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) 4 0 3 2 0 ( n − 8 ) ( n − 7 ) ( n − 6 ) ( n − 5 ) ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) 3 6 2 8 8 0 ( n − 9 ) ( n − 8 ) ( n − 7 ) ( n − 6 ) ( n − 5 ) ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 ) 3 6 2 8 8 0 0 ( n − 1 0 ) ( n − 9 ) ( n − 8 ) ( n − 7 ) ( n − 6 ) ( n − 5 ) ( n − 4 ) ( n − 3 ) ( n − 2 ) ( n − 1 )
Using the differences down the left edge of the differences triangle:
2 ( 1 ) + 6 ( n − 1 ) + 6 ( 2 1 ( n − 2 ) ( n − 1 ) ) + 2 ( 6 1 ( n − 3 ) ( n − 2 ) ( n − 1 ) )
Which simplifies to:
3 1 n ( n + 1 ) ( n + 2 )
Evaluating that expression at n = 1 0 0 gives 3 1 0 0 × 1 0 1 × 1 0 2 ⇒ 3 4 3 4 0 0 .
This procedure, written as a Wolfram Mathematica expression, is:
generator = Function [ { diffs , start , step } , FullSimplify ⎣ ⎡ Evaluate ⎣ ⎡ Expand ⎣ ⎡ i = 0 ∑ Length [ diffs ] − 1 i ! diffs [ [ i + 1 ] ] ∏ j = 0 i − 1 ( step #1 − start − j ) ⎦ ⎤ ⎦ ⎤ ⎦ ⎤ & ] ;
1×2+2×3+3×4+......+99×100+100×101 =2(1+3)+4(3+5)+6(5+7)+......+100(99+101) =2×4+2×2×2×4+2×3×3×4+......+2×50×4×50 =8+8×2²+8×3²+......+8×50² =8(1+2²+3²+......+50²) =8×42925 =343400
Using identities: (n+1)³=n³+3n²+3n+1 → (n+1)³-n³=3n²+3n+1
n³-(n-1)³=3(n-1)²+3(n-1)+1 ......
3³-2³=3×(2²)+3×2+1
2³-1³=3×(1²)+3×1+1.
If I add these n sides of this equation, To:(n+1)³-1=3(1²+2²+3²+....+n²)+3(1+2+3+...+n)+n,
∵1+2+3+...+n=(n+1)n/2
∴n³+3n²+3n=3(1²+2²+3²+....+n²)+3(n+1)n/2+n
∴ 1²+2²+3²+....+n²=n(n+1)(2n+1)/6
then 50×51×101÷6=42925
Problem Loading...
Note Loading...
Set Loading...
Chew-Seong Cheong’s solution is good, but I think there’s an interesting approach as follows, ∵ 1 × 2 2 × 3 3 × 4 = 3 1 × ( 1 × 2 × 3 − 0 × 1 × 2 ) = 3 1 × ( 2 × 3 × 4 − 1 × 2 × 3 ) = 3 1 × ( 3 × 4 × 5 − 2 × 3 × 4 ) ∴ 1 × 2 + 2 × 3 + 3 × 4 = 3 1 × 3 × 4 × 5 = 2 0 ⋯ ⋯ ⋯ ⋯ S = 3 1 × ( 1 × 2 × 3 − 0 × 1 × 2 ) + 3 1 × ( 2 × 3 × 4 − 1 × 2 × 3 ) + ⋯ + 3 1 × ( 1 0 0 × 1 0 1 × 1 0 2 − 9 9 × 1 0 0 × 1 0 1 ) = 3 1 × ( 1 0 0 × 1 0 1 × 1 0 2 − 0 ) = 3 4 3 4 0 0