A Long Equation I

Algebra Level 1

( 1 2 + 1 3 + 1 4 + 1 5 ) ( 1 3 + 1 4 + 1 5 + 1 6 ) ( 1 2 + 1 3 + 1 4 + 1 5 + 1 6 ) ( 1 3 + 1 4 + 1 5 ) = ? \left(\frac 12 + \frac 13 + \frac 14 + \frac 15 \right) \left(\frac 13 + \frac 14 + \frac 15 + \frac 16 \right) - \left(\frac 12 + \frac 13 + \frac 14 + \frac 15 + \frac 16 \right) \left(\frac 13 + \frac 14 + \frac 15 \right) = ?

1 13 \frac 1{13} 1 11 \frac 1{11} 1 12 \frac 1{12} 1 10 \frac 1{10}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

9 solutions

Chew-Seong Cheong
Jul 30, 2019

X = ( 1 2 + 1 3 + 1 4 + 1 5 ) ( 1 3 + 1 4 + 1 5 + 1 6 ) ( 1 2 + 1 3 + 1 4 + 1 5 + 1 6 ) ( 1 3 + 1 4 + 1 5 ) Let a = 1 3 + 1 4 + 1 5 = ( 1 2 + a ) ( a + 1 6 ) ( 1 2 + a + 1 6 ) a = 1 2 a + 1 12 + a 2 + 1 6 a 1 2 a a 2 1 6 a = 1 12 \begin{aligned} X & = \left(\frac 12 + {\color{#3D99F6}\frac 13 + \frac 14 + \frac 15} \right) \left({\color{#3D99F6}\frac 13 + \frac 14 + \frac 15} + \frac 16 \right) - \left(\frac 12 + {\color{#3D99F6}\frac 13 + \frac 14 + \frac 15} + \frac 16 \right) \left({\color{#3D99F6}\frac 13 + \frac 14 + \frac 15} \right) & \small \color{#3D99F6} \text{Let }a = \frac 13 + \frac 14 + \frac 15 \\ & = \left(\frac 12 + {\color{#3D99F6}a} \right) \left({\color{#3D99F6}a} + \frac 16 \right) - \left(\frac 12 + {\color{#3D99F6}a} + \frac 16 \right) {\color{#3D99F6}a} \\ & = \frac 12 a + \frac 1{12} + a^2 + \frac 16 a - \frac 12 a - a^2 - \frac 16a \\ & = \boxed{\frac 1{12}} \end{aligned}

I did the exact same thing with the same variable! lol

Ruilin Wang - 1 year, 10 months ago

Log in to reply

Actually the same thing Happened with me !

Julie Das - 1 year, 7 months ago

Good solution, but I think it’s a bit long. Thanks, sir.

Edward Christian - 1 year, 10 months ago

I think is as concise as is logical!

Luis Sanchez - 1 year, 1 month ago

Log in to reply

Glad that you like it.

Chew-Seong Cheong - 1 year, 1 month ago

I liked to put x !

Raj Sutariya - 10 months, 1 week ago
Edward Christian
Jul 30, 2019

S = ( 1 2 + 1 3 + 1 4 + 1 5 ) ( 1 3 + 1 4 + 1 5 + 1 6 ) ( 1 2 + 1 3 + 1 4 + 1 5 + 1 6 ) ( 1 3 + 1 4 + 1 5 ) = a ( b + 1 6 ) b ( a + 1 6 ) Let a = 1 2 + 1 3 + 1 4 + 1 5 , b = 1 3 + 1 4 + 1 5 = a b + a 6 a b b 6 = a b 6 = 1 6 × 1 2 = 1 12 \begin{aligned} S &=\left(\blue{\frac 12 + \frac 13 + \frac 14 + \frac 15 }\right) \left(\red{\frac 13 + \frac 14 + \frac 15 }+ \frac 16 \right) - \left(\blue{\frac 12 + \frac 13 + \frac 14 + \frac 15 }+ \frac 16 \right) \left(\red{\frac 13 + \frac 14 + \frac 15 }\right) \\ &=a\left(b+\dfrac{1}{6}\right)-b\left(a+\dfrac{1}{6}\right) \small\text{ Let } a=\blue {\frac12+\frac13+\frac14+\frac15}\text{, } b= \red{\frac13+\frac14+\frac15} \\ &=ab+\dfrac{a}{6}-ab-\dfrac{b}{6} \\ &=\dfrac{a-b}{6} \\ &=\dfrac{1}{6}\times \dfrac{1}{2} \\ &=\dfrac{1}{12} \end{aligned}

nice solution

Razing Thunder - 9 months, 1 week ago

Log in to reply

Glad you like it!

Edward Christian - 9 months, 1 week ago

Elegant solution

Tanmay Topkhanewale - 5 months ago
Nomen Incognita
Jul 30, 2019

( 1 2 + 1 3 + 1 4 + 1 5 ) ( 1 3 + 1 4 + 1 5 + 1 6 ) ( 1 2 + 1 3 + 1 4 + 1 5 + 1 6 ) ( 1 3 + 1 4 + 1 5 ) = [ ( 1 2 + 1 3 + 1 4 + 1 5 ) ( 1 3 + 1 4 + 1 5 ) + ( 1 2 + 1 3 + 1 4 + 1 5 ) ( 1 6 ) ] [ ( 1 2 + 1 3 + 1 4 + 1 5 ) ( 1 3 + 1 4 + 1 5 ) + ( 1 6 ) ( 1 3 + 1 4 + 1 5 ) ] = ( 1 6 ) ( 1 2 + 1 3 + 1 4 + 1 5 ) ( 1 6 ) ( 1 3 + 1 4 + 1 5 ) = [ ( 1 6 ) ( 1 2 ) + ( 1 6 ) ( 1 3 + 1 4 + 1 5 ) ] ( 1 6 ) ( 1 3 + 1 4 + 1 5 ) = ( 1 6 ) ( 1 2 ) = 1 12 \begin{aligned} &~ \left(\frac12+\frac13+\frac14+\frac15\right)\left(\color{#D61F06}{\frac13+\frac14+\frac15}\color{#3D99F6}{+\frac16}\right)-\left(\color{magenta}{\frac12+\frac13+\frac14+\frac15}\color{#20A900}{+\frac16}\right)\left(\frac13+\frac14+\frac15\right) \\ &=\left[\cancel{\left(\frac12+\frac13+\frac14+\frac15\right)\left(\color{#D61F06}{\frac13+\frac14+\frac15}\right)}+\left(\frac12+\frac13+\frac14+\frac15\right)\left(\color{#3D99F6}{\frac16}\right)\right]-\left[\cancel{\left(\color{magenta}{\frac12+\frac13+\frac14+\frac15}\right)\left(\frac13+\frac14+\frac15\right)}+\left(\color{#20A900}{\frac16}\right)\left(\frac13+\frac14+\frac15\right)\right] \\ &=\left(\color{#3D99F6}{\frac16}\right)\left(\color{cyan}{\frac12}\color{#EC7300}{+\frac13+\frac14+\frac15}\right)-\left(\color{#20A900}{\frac16}\right)\left(\frac13+\frac14+\frac15\right) \\ &=\left[\left(\color{#3D99F6}{\frac16}\right)\left(\color{cyan}{\frac12}\right)+\cancel{\left(\color{#3D99F6}{\frac16}\right)\left(\color{#EC7300}{\frac13+\frac14+\frac15}\right)}\right]-\cancel{\left(\color{#20A900}{\frac16}\right)\left(\frac13+\frac14+\frac15\right)} \\ &=\left(\color{#3D99F6}{\frac16}\right)\left(\color{cyan}{\frac12}\right) \\ &=\frac1{12} \end{aligned}

Ha! We have the same idea!

Xuebin Zhang - 1 year, 10 months ago

Multiply the individual fractions each by 60 (least common multiplier) and than divide by 60^2 as the multiplier is present twice in each product of that result.

((30+20+15+12)(20+15+12+10)-(30+20+15+12+10)(20+15+12))/(60*60)

77 × 57 87 × 47 6 0 2 \frac{77\times57-87\times47}{60^2}

300/3600

1/12

This is not the way I actually solved the problem. This is the way I would have done it in second grade (about age eight years).

I started by saying x = ( 1 3 + 1 4 + 1 5 ) x= \left( \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \right) then our sum becomes ( x + 1 2 ) ( x + 1 6 ) ( x + 4 6 ) x \left( x + \frac{1}{2} \right) \left( x + \frac{1}{6} \right) -\left( x + \frac{4}{6} \right) x We expand to get x 2 + 4 6 x + 1 12 x 2 4 6 x = 1 12 x^2 + \frac{4}{6}x + \frac{1}{12}-x^2 -\frac{4}{6}x= \frac{1}{12} so our answer is 1 12 \frac{1}{12}

Huda Huda
Apr 1, 2020

Let S S be a sum of the numbers. Say a = 1 3 + 1 4 + 1 5 , b = 1 2 , c = 1 6 a = \frac {1}{3} + \frac {1}{4} + \frac {1}{5}, b = \frac {1}{2}, c = \frac {1}{6} . Thus, S = ( a + b ) ( a + c ) ( a + b + c ) ( a ) S = (a + b)(a + c) - (a + b + c)(a) . By distribution law, we have S = a 2 + a b + a c + b c a 2 a b a c = b c = ( 1 2 ) ( 1 6 ) = 1 12 S = a^2 + ab + ac + bc - a^2 - ab - ac = bc = (\frac {1}{2})(\frac {1}{6}) = \frac {1}{12} .

Avieros Athalla
Nov 2, 2019

2x6 =12 3x4=12 4x3=12 6x2=12 no idea about 5

Zahid Hussain
Sep 2, 2019

If 1/3 + 1/4 + 1/5 = a, 1/2 = x and 1/6 = y then the equation becomes
(a+x) (b+x) - (a+b+x) (x)
By solving it we get
ax + bx + ab + x^2 - (ax + bx + x^2) = ab which is 1/2 x 1/6 = 1/12


I think the basic idea is very similar to that of Chew Song, I just left the numbers part till end as most of them were going to be eliminated anyway.

Zahid Hussain - 1 year, 9 months ago
Callie Ferguson
Jul 30, 2019

Another way to solve this is by assigning a variable to each fraction. For example: x = 1 2 x={\frac{1}{2}} , y = 1 3 y={\frac{1}{3}} , z = 1 4 z={\frac{1}{4}} , u = 1 5 u={\frac{1}{5}} , v = 1 6 v={\frac{1}{6}} .

So then, after expanding each of the multiplied sets, you just cancel out the common terms. Doing so leaves you with xv = 1 12 {\frac{1}{12}} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...