A lot of logarithms!!

Level pending

For what real value of x x , the numbers: log 178 \log178 , log 81 ( 2 x + 2 3 x ) \log\sqrt{81(2^x+2*3^x)} , x log 3 x\log3 in the order that provided are in arithmetic progression?


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Prasun Biswas
Feb 3, 2014

We should use here the formula log ( m n ) = log m log n \log (\frac{m}{n}) = \log m - \log n and m log n = log m n m \log n = \log m^n . For the terms log 178 , log 81 ( 2 x + 2 × 3 x ) , x log 3 \log 178, \log \sqrt{81(2^x+2\times 3^x)}, x \log 3 to be in AP, then the difference of the consecutive terms should be same i.e,

log 81 ( 2 x + 2 × 3 x ) log 178 = x log 3 log 81 ( 2 x + 2 × 3 x ) \large \log \sqrt{81(2^x+2\times 3^x)}-\log 178 = x \log 3-\log \sqrt{81(2^x+2\times 3^x)}

log ( 81 ( 2 x + 2 × 3 x ) 178 ) = log 3 x log 81 ( 2 x + 2 × 3 x ) \implies \large{ \log (\frac{\sqrt{81(2^x+2\times 3^x)}}{178})= \log 3^x-\log \sqrt{81(2^x+2\times 3^x)}}

log ( 81 ( 2 x + 2 × 3 x ) 178 ) = log ( 3 x 81 ( 2 x + 2 × 3 x ) ) \implies \large{ \log (\frac{\sqrt{81(2^x+2\times 3^x)}}{178})= \large \log (\frac{3^x}{\sqrt{81(2^x+2\times 3^x)}})}

Applying antilog, we get---

81 ( 2 x + 2 × 3 x ) 178 = 3 x 81 ( 2 x + 2 × 3 x ) \large{\frac{\sqrt{81(2^x+2\times 3^x)}}{178}=\frac{3^x}{\sqrt{81(2^x+2\times 3^x)}}}

178 × 3 x = 81 ( 2 x + 2 × 3 x ) \implies 178\times 3^x=81(2^x+2\times 3^x)

178 × 3 x = 81 × 2 x + 162 × 3 x \implies 178\times 3^x=81\times 2^x + 162\times 3^x

16 × 3 x = 81 × 2 x \implies 16\times 3^x=81\times 2^x

2 x 3 x = 16 81 = 2 4 3 4 \implies \large{\frac{2^x}{3^x}=\frac{16}{81}=\frac{2^4}{3^4}}

( 2 3 ) x = ( 2 3 ) 4 \implies \large{(\frac{2}{3})^x=(\frac{2}{3})^4}

Comparing both sides, we get ----

x = 4 x=\boxed{4}

If the numbers a , b a,b and c c are in arithmetic progression, it follows that b a = c b b-a=c-b . Also, a logarithm property states that log a log b = log a b \log a - \log b = \log{\frac{a}{b}} .

It all comes down to:

log 81 ( 2 x + 2 × 3 x ) 178 = log 3 x 81 ( 2 x + 2 × 3 x ) 81 ( 2 x + 2 × 3 x ) 178 = 3 x 81 ( 2 x + 2 × 3 x ) \log{\frac{\sqrt{81(2^x+2\times3^x)}}{178}} = \log{\frac{3^x}{\sqrt{81(2^x+2\times3^x)}}} \Rightarrow \frac{\sqrt{81(2^x+2\times3^x)}}{178} = \frac{3^x}{\sqrt{81(2^x+2\times3^x)}}

178 × 3 x = 81 × 2 x + 162 × 3 x 16 × 3 x = 81 × 2 x \Rightarrow 178 \times 3^x = 81 \times 2^x +162 \times 3^x \Rightarrow 16 \times 3^x = 81 \times 2^x

3 x 81 = 2 x 16 3 x 4 = 2 x 4 \Rightarrow \frac{3^x}{81} = \frac{2^x}{16} \Rightarrow 3^{x-4} = 2^{x-4} .

A generic form of this last equation is a c = b c a^c = b^c , where a \; a and b \; b are constants and c \; c is the variable. For a b a \neq b , it will only be true for c = 0 c=0 .

Thus, x 4 = 0 x = 4. x-4=0 \Rightarrow \boxed{x = 4.}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...